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State-of-the-art Text-to-Image Diffusion Models 

2

Seedream 2.0  
2025 April 

Qwen-Image  
2025 August

FLUX 1.0 
2024 August

Stable Diffusion 3.5 
2024 October



3

11B

20B

20B

Seedream 2.0  
2025 April 

Qwen-Image  
2025 AugustFLUX 1.0 

2024 August

Common backbone architecture [1][2]: Multi-Modal Diffusion Transformers (MMDiT) 

• Significantly outperforms previous generation of models such as SDXL and SD1.5 and smaller 
models trained from scratch e.g. SANA [3] in real-world evaluations [4]; 

• Massive parameter-count; 

• High Cost: Requires high-end GPUs (e.g., A100) hence impossible for standard edge deployment.
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Previous works [5][6] proved depth-pruning effective for DM compression. 

• Targeted UNet-based architecture, as used in Stable Diffusion 1.5, SDXL. 

• Fail to generalise to large-scale MMDiTs: Significant degradation at >20% compression.

https://artificialanalysis.ai/image/leaderboard/text-to-image


Hypothesis: The Two-fold Hierarchy
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• Inter-block Hierarchy: Early blocks establish semantic structure. Later blocks handle 
detailed refinements. 
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Hypothesis: The Two-fold Hierarchy
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• Inter-block Hierarchy: Early blocks establish semantic structure. Later blocks handle 
detailed refinements.  

• Intra-block Hierarchy: Not all subcomponents (Attention, MLP) are equal. Their 
importance varies by position. 
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Hypothesis: The Two-fold Hierarchy
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To verify this:  
• Data: Samples from HPSv2  
• Model: SD3.5 Large Turbo  
• Removing 3 non-consecutive blocks at different locations
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Core Insights: The Two-fold Hierarchy
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Early blocks establish semantic structure. 
Later blocks handle detailed refinements. 

Removed Block-indexes🔬Inter-block Hierarchy
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Early blocks establish semantic structure. 
Later blocks handle detailed refinements. 
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Core Insights: The Two-fold Hierarchy
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Not all subcomponents (Attention, MLP) are 
equal. Their importance varies by position.      

🔬Intra-block Hierarchy

Early blocks establish semantic structure. 
Later blocks handle detailed refinements. 

🔬Inter-block Hierarchy
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Core Insights: The Two-fold Hierarchy
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Not all subcomponents (Attention, MLP) are 
equal. Their importance varies by position.      

🔬Inter-block Hierarchy 🔬Intra-block Hierarchy
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Hierarchical Position Pruning (HPP) 
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Positional Weight Preservation (PWP)
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Sensitivity-Guided Distillation (SGDistill)
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• SD3.5 Large Turbo (8B) and FLUX.1-Schnell (12B),  
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• Baselines:   

• I)  BK-SDM (Kim et al. 2024a): proposed block pruning of U-Net-based models using the CLIP 
score+ distillation of the pruned model  
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Measurements on Consumer Grade GPUs
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User Study 
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Image Quality by GenEval and HPSv2
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Image Quality by GenEval and HPSv2



Takeaway 
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🔬We identify a dual hierarchical structure in MMDiT-based DMs: an inter-block hierarchy and an 
intra-block hierarchy; 

📝  We introduce HierarchicalPrune, establishing a comprehensive, position-aware pruning and 
distillation framework for large-scale DMs; 

🏋 Through extensive evaluation, we demonstrate that HierarchicalPrune is able to achieve 
significant memory reduction with minimal quality loss.
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