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State-of-the-art Text-to-Image Diffusion Models
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The Challenge: Scale v.s. Efficiency
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Common backbone architecture [1][2]: Multi-Modal Diffusion Transformers (MMDIT)

e Significantly outperforms previous generation of models such as SDXL and SD1.5 and smaller
models trained from scratch e.g. SANA [3] in real-world evaluations [4];

e Massive parameter-count;

e High Cost: Requires high-end GPUs (e.g., A100) hence impossible for standard edge deployment.
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Common backbone architecture [1][2]: Multi-Modal Diffusion Transformers (MMDIT)

e Significantly outperforms previous generation of models such as SDXL and SD1.5 and smaller models
trained from scratch e.qg. SANA [3] in real-world evaluations [4];

e Massive parameter-count;

» High Cost: Requires high-end GPUs (e.g., A100) hence impossible for standard edge deployment.

Previous works [5][6] proved depth-pruning effective for DM compression.
e Targeted UNet-based architecture, as used in Stable Diffusion 1.5, SDXL.

e Fail to generalise to large-scale MMDiTs: Significant degradation at >20% compression.

Esser, P. et al. Scaling Rectified Flow Transformers for HighResolution Image Synthesis. In International Conference on Machine Learning (ICML'24).

Black Forest Labs. Flux.1 Model Family. https:// blackforestlabs.ai/announcing-black-forest-labs/

Chen, J. et al. 2025b. SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation. arXiv:2503.09641.

Artificial Analysis Leaderboard https://artificialanalysis.ai/image/leaderboard/text-to-image

Kim, et al, BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion. In European Conference on Computer Vision (ECCV’24).

Lee, Y. et al, KOALA: Empirical Lessons toward Memory-Efficient and Fast Diffusion Models far Text-to-Image Synthesis. Advances in Neural Information Processing Systems (NeurlPS’24).
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Hypothesis: The Two-fold Hierarchy
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e Inter-block Hierarchy: Early blocks establish semantic structure. Later blocks handle
detailed refinements.
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e Inter-block Hierarchy: Early blocks establish semantic structure. Later blocks handle
detailed refinements.

e Intra-block Hierarchy: Not all subcomponents (Attention, MLP) are equal. Their
importance varies by position.
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To verify this:
e Data: Samples from HPSv2
e Model: SD3.5 Large Turbo

e Removing 3 non-consecutive blocks at different locations



Core Insights: The Two-fold Hierarchy
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Core Insights: The Two-fold Hierarchy

& Inter-block Hierarchy
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Not all subcomponents (Attention, MLP) are
equal. Their importance varies by position.

Early blocks establish semantic structure.

Later blocks handle detailed refinements.
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Core Insights: The Two-fold Hierarchy

& Inter-block Hierarchy
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Not all subcomponents (Attention, MLP) are
equal. Their importance varies by position.

Early blocks establish semantic structure.

Later blocks handle detailed refinements.
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Hierarchical Prune

Hierarchical Position Pruning (HPP)
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Hierarchical Prune

Positional Weight Preservation (PWP)
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Hierarchical Prune

Sensitivity-Guided Distillation (SGDistill)

Sensitivity to Change -> Distillation Strength
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Evaluation

e SD3.5 Large Turbo (8B) and FLUX.1-Schnell (12B),
e YE-POP dataset

Chen, J. et al. 2025b. SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation. arXiv:2503.09641.
Kim, et al, BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion. In European Conference on Computer Vision (ECCV’24).
Lee, Y. et al, KOALA: Empirical Lessons toward Memory-Efficient and Fast Diffusion Models for Text-to-Image Synthesis. Advances in Neural Information Processing Systems (NeurlPS’24).
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Evaluation

e SD3.5 Large Turbo (8B) and FLUX.1-Schnell (12B),
e YE-POP dataset

e Baselines:

e |) BK-SDM (Kim et al. 2024a): proposed block pruning of U-Net-based models using the CLIP
score+ distillation of the pruned model

e i) KOALA (Lee et al. 2024): each block’s input-output cosine similarity
e SOTA small-scale DM, SANA (Chen et al. 2025b)
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Lee, Y. et al, KOALA: Empirical Lessons toward Memory-Efficient and Fast Diffusion Models for Text-to-Image Synthesis. Advances in Neural Information Processing Systems (NeurlPS’24).

21



Evaluation

e SD3.5 Large Turbo (8B) and FLUX.1-Schnell (12B),
e YE-POP dataset

e Baselines:

e |) BK-SDM (Kim et al. 2024a): proposed block pruning of U-Net-based models using the CLIP
score+ distillation of the pruned model

e i) KOALA (Lee et al. 2024): each block’s input-output cosine similarity
e SOTA small-scale DM, SANA (Chen et al. 2025b)
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Evaluation

Original Model

Compression Methods

Non-Compression
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Measurements on Consumer Grade GPUs

Peak Memory [GB]

25



User Study
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Image Quality by GenEval and HPSv2

Model Method Memory (%) GenEval  HPSv2 {} | Reduction |
Linear DiT  SANA-Sprint 3.14 GB (100%) 0.77 29.61 -
Original 15.8 GB (100%) 0.71 30.29 -
KOALA (+Quant) 3.56 GB (22.5%)"| 0.33 18.44 46.4%
SD3.5 BK-SDM 12.6 GB (79.4%)._| 0.38 21.21 38.2% S
Large Turbo BK-SDM (+Quant) 3.56 GB (22.5%) | 034 1983 | 433% |
Ours (HPP+PWP+Q) | 3.56 GB (22.5%) 0.69 28.15 4.8%
Ours (All) 3.24 GB (20.5%) 0.62 26.29 13.3%
Original 22.6 GB (100%) 0.66 29.71 -
FLUX.1 KOALA 15.9 GB (70.5%) 0.38 25.24 28.7%
Schnell BK-SDM 15.9 GB (70.5%) 0.45 27.38 19.8%
Ours (All) 4.44 GB (19.6%) 0.64 28.69 3.2%
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Image Quality by GenEval and HPSv2
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Takeaway

& We identify a dual hierarchical structure in MMDiT-based DMs: an inter-block hierarchy and an
intra-block hierarchy;

2 We introduce HierarchicalPrune, establishing a comprehensive, position-aware pruning and
distillation framework for large-scale DMs;

W, Through extensive evaluation, we demonstrate that HierarchicalPrune is able to achieve
significant memory reduction with minimal quality loss.
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& {yd.kwon, rui.li}@samsung.com
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