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Abstract

Federated learning alleviates the privacy risk in distributed learning by transmit-
ting only the local model updates to the central server. However, it faces chal-
lenges including statistical heterogeneity of clients’ datasets and resource con-
straints of client devices, which severely impact the training performance and user
experience. Prior works have tackled these challenges by combining personaliza-
tion with model compression schemes including quantization and pruning. How-
ever, the pruning is data-dependent and thus must be done on the client side which
requires considerable computation cost. Moreover, the pruning normally trains a
binary supermask ∈ {0, 1} which significantly limits the model capacity yet with
no computation benefit. Consequently, the training requires high computation cost
and a long time to converge while the model performance does not pay off. In this
work, we propose HideNseek which employs one-shot data-agnostic pruning at
initialization to get a subnetwork based on weights’ synaptic saliency. Each client
then optimizes a sign supermask ∈ {−1,+1} multiplied by the unpruned weights
to allow faster convergence with the same compression rates as state-of-the-art.
Empirical results from three datasets demonstrate that compared to state-of-the-
art, HideNseek improves inferences accuracies by up to 40.6% while reducing the
communication cost and training time by up to 39.7% and 46.8% respectively.

1 Introduction

Federated learning [McMahan et al., 2017] improves privacy protection by decoupling the need for a
central data repository from learning distributed datasets. Each client uploads its local model trained
with local datasets to a central server that maintains a global model. The server updates the global
model via aggregating the clients’ updates and sends the new model to the clients. These processes
are iterated until the model converges or the predefined cycle ends.

While improving privacy protection, this paradigm also faces challenges such as statistical hetero-
geneity, which refers to the non-IID distribution of the data among clients, impacting the global
model convergence if data from different clients are too diverged. Some works address statistical
heterogeneity by introducing various learning techniques for personalization [Fallah et al., 2020;
Smith et al., 2017; Lin et al., 2020; Gong et al., 2021; Zhu et al., 2021].

Another major challenge faced by federated learning is the resource constraints, which refer to
the limited computation capacity and transmission bandwidth of the client devices. The limited
resource restricts the model size that can be trained in the client devices and transmitted timely to
the server for aggregation. Several recent works have surged to address this challenge by adapting
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training procedures [Li et al., 2020; Reisizadeh et al., 2020] and employing model compression
schemes [Diao et al., 2021; Horvath et al., 2021; Bouacida et al., 2021].

Lately, FedMask [Li et al., 2021] tackles both statistical heterogeneity and resource constraints by
employing a “masking is training” philosophy based on the lottery ticket hypothesis (LTH) [Fran-
kle and Carbin, 2018]. FedMask prunes the local model to comply with the resource constraints.
Then, the client learns a sparse local binary supermask for personalization to alleviate the statistical
heterogeneity across clients.

However, exiting methods face several challenges. First, current pruning methods in federated setup
are mostly data-dependent and thus have to be performed on the client-side. Hence the client devices
with limited resources cannot avoid the considerable computation cost. Second, such pruning meth-
ods commonly employ the binary supermask which essentially is unstructured pruning that brings
no computational advantage yet limits the model capacity. Consequently, the model performance is
limited, yet requires high computation cost and a long convergence period.

Therefore, in this paper, we propose HideNseek, a statistical heterogeneity-aware federated learning
framework that provides computation and communication efficiency powered by sign supermask
[Zhou et al., 2019]. Specifically, we make the following contributions.

• HideNseek proposes a federated version of LTH with sign optimization for the first time.
Compared with the commonly used binary supermask, our approach provides higher accu-
racy and faster convergence.

• HideNseek performs server-side one-shot pruning at initialization by employing an itera-
tive data-agnostic approach based on synaptic saliency of the weights’ signs. As such, Hi-
deNseek greatly alleviates the computation burden and communication cost for the clients
with limited capacities.

• Empirical results on varied datasets demonstrate that HideNseek outperforms the state-of-
the-art methods in inference accuracy by up to 40.6% while reducing the communication
cost and training time by up to 39.7% and 46.8% respectively.

2 Background & Objective Formulation

In this section, we begin with the background on federated learning and LTH and formulate the
objective of data-agnostic pruning for federated learning.

2.1 Federated Learning

In federated learning, a deep neural network must be learned in a distributed fashion. This is
achieved by a central server aggregating copies of the network weights learned among clients on
their local datasets. The learning objective is to find weights w that minimize the empirical loss
across clients

min
w
F (w) =

K∑
k=1

nk
n
L[f(xk;w), yk] (1)

where the network f(·;w) is a composite function of layers parametrized by vectorized weights
w ∈ Rd and L is the empirical loss function which measures the ability to approximate the function
generating the local dataset (xk, yk) of client k. nk is the number of local samples and n =

∑
k nk

is the total number of samples across all the K clients.

A prior work [McMahan et al., 2017] provides the widely used FedAvg to solve this objective via
distributed SGD. In each communication round t, the central server selects a subset of c� K clients
and sends them a copy of the global weights wt. The clients modify their local copy of the weights
wt

k by minimizing the empirical loss on local datasets to obtain wt+1
k and transmit them back to the

server. The server updates the global weights by simply averaging the clients’ weights

wt+1 =
1

c

c∑
k=1

wt+1
k (2)

Several problems arise in a real-world deployment. Firstly, the clients incur communication costs
due to weight transmission and computation costs due to local weight optimization. Secondly, the
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local datasets are not independent and identically distributed (non-IID) so the global weights must
generalize well among clients. Some works have modified their learning objective(s) to address
these problems (see Section 6).

2.2 Lottery Ticket Hypothesis

LTH [Frankle and Carbin, 2018] is a nascent avenue in machine learning that can tackle the afore-
mentioned issues in federated learning. It states that a randomly initialized neural network contains
a subnetwork called a winning ticket when trained in isolation, performs as well as the original
network. A more ambitious extension comes from [Ramanujan et al., 2020] which states that a
sufficiently overparametrized network contains a winning ticket at a randomly initialized state. Fur-
thermore, this winning ticket can be determined via freezing the weights at random initialization w0

and pruning a subset of these weights to find a sparse subnetwork. To improve the learning perfor-
mance, [Chen et al., 2022] suggest applying a transform function U ∈ U to the weights to further
minimize the empirical loss. The learning objective is thus

min
U∈U,||m||0=S

L[f(x;U(w0 �m)), y] (3)

where m ∈ {0, 1}d is a binary supermask with sparsity level S and the same dimensionality as the
weights. The winning ticket is represented as the element-wise multiplication of the weights and
the supermask, i.e., w0 �m. However, optimizing Eq. (3) is computationally intractable due to the
large dimensionality of weights and transformation space U . Hence, they propose to decouple the
optimization into two stages. The first stage is the pruning phase where a binary supermask must be
found to sparsify the model by optimizing the following

m̂ ∈ min
||m||0=S

R(f(x;w0 �m)) (4)

where R is a scoring function that measures the ability of the binary supermask m to isolate the
winning ticket from the model. The second stage is the training phase where a weight transformation
is learned to minimize the empirical loss

Û ∈ min
U∈U
L[f(x;U(w0 � m̂)), y] (5)

2.3 Objective Formulation

In essence, LTH applies a “masking is training” philosophy where an optimal sparse subnetwork
must be learned without modifying the weights. Given the communication and computation effi-
ciency brought by this idea (discussed in subsequent sections), we propose to adopt this hypothesis
for the federated setting. However, the weight transformation space U is very vast. Following [Chen
et al., 2022], we confine the space to sign flipping transformation space Us ∈ U where a transfor-
mation U(w, s) = w � s element-wise multiplication of the sign supermask s ∈ {−1,+1}d to the
weights w. The updated learning objective of our work is

min
m,s

F (m, s) =

K∑
k=1

nk
n
L[f(xk;w0 �m� s), yk] (6)

The subsequent sections elaborate on a federated learning algorithm to solve the above objective.

3 Methodology

3.1 HideNseek

In this work, we propose an efficient federated learning algorithm called HideNseek by solving for
federated adaptation of the LTH. Figure 1 depicts an overview of the framework. As mentioned
earlier, the learning process can be performed in two phases.

In the first phase, the server first performs pruning-at-initialization to isolate the winning ticket ( 1 ).
Since the server does not possess training data, a data-agnostic pruning method is applied. Following
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Figure 1: Overview of HideNseek framework

[Tanaka et al., 2020], we measure the score of the signs of weights via their synaptic saliency (see
Section 3.4), and employ global structured pruning for hardware efficiency.

In the second phase, an optimal weight transformation has to be learned to minimize the empirical
loss in a federated manner. In each training step t, the server sends the global sign supermask st to
the selected clients ( 2 ) which initializes a local sign supermask st+1

k . The clients then freeze the
model weights and optimize the local sign supermask by minimizing the empirical loss using Eq. (6)
( 3 ). As such, a sign flipping transformation is learned and sent back to the server ( 4 ). The server
then aggregates these local supermasks using Eq. (8) ( 5 ).

After the training phase, each client multiplies the aggregated sign supermask to its weights to get
the final local model ( 6 ). Algorithm 1 (in Appendix A) summarizes the processes with highlighted
details elaborated in the following paragraphs.

3.2 Personalization

The output layer of the model cannot be simply optimized for its signs because the weight mag-
nitudes must be scaled for stable training. We thus split our models into feature extractors which
constitute all the hidden layers and classifier which is the output layer. The weights are frozen and
the sign supermask is learned only for the feature extractor while the weights of the classifier are
modifiable, as the optimization of the local data. Aligned with prior works [Zhu et al., 2021], our
work further reinforces personalization among clients.

3.3 Sign Flipping Transformation

Optimizing the sign supermask is crucial to learning in our algorithm. As such, we handle certain
preliminaries to achieve the optimization. As mentioned earlier, a model can be expressed as a
composition of layers performing operations of vectorized weights. As an example, let us consider
the fully connected layer. Note that the bias term has been omitted for brevity. A fully-connected
layer l can be expressed as y[l] = (w[l] � s[l]) · x[l], where y[l] ∈ Ri is the output, x[l] ∈ Rj

is the input, and w[l] ∈ Ri×j is the weights. We thus handle the learning of a sign supermask
s[l] ∈ {−1,+1}i×j with the same dimensionality as the weights.
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However, the traditional SGD optimization cannot be applied to the sign supermasks due to their
discrete nature. Hence, we implement a straight-through estimator [Bengio et al., 2013] with a real-
valued sign supermask ŝ[l] ∈ Ri×j . In the forward pass, ŝ is quantized using the piecewise sign
function

sij = sign(ŝij) =

{
+1 ŝij ≥ 0

−1 ŝij < 0
(7)

where sij is an element in the i-th row and j-th column of the sign supermask s. The gradients
of s in the backward pass are computed as ∇sL = (∇yL · xT ) � w. Given that the sign function
is not differentiable, directly assigning the gradients from the quantized sign supermask to the real
sign supermask (i.e.,∇ŝL = ∇sL) would lead to large gradient variance [Courbariaux et al., 2016].
Hence, we employ a hyperbolic tangent function, denoted as tanh(·), for a continuous approxima-
tion of the sign function for the backward pass, sij = tanh(ŝij). This would allow us to compute
the gradients of the real sign supermask ŝ from the binary sign supermask s as ∇ŝL = Ψ � ∇sL,
where Ψ is the gradient matrix of the hyperbolic tangent function with values explicitly calculated
as Ψij = (1− ŝ2ij).

Since the clients transmit quantized sign supermasks to the server for communication efficiency, we
employ the following sign aggregation scheme to obtain the real-valued sign supermask at the server

ŝ = arctanh

(∑
k

nk
n
sk

)
(8)

3.4 Server-side Pruning

Another crucial aspect in HideNseek is the pruning phase where the winning ticket must be isolated
from the network. Following [Li et al., 2021], we employ one-shot pruning at initialization but
perform it on the server-side to reduce the load on the clients. As the server does not contain any
training data, we employ a data-agnostic iterative pruning approach [Tanaka et al., 2020] where the
prune scores are determined based on the weight’s synaptic saliency. Given that the weights are
frozen during training the sign supermask, we measure the synaptic saliency of the sign of a given
weight in a model with L layers is as follows

RSF(s
[l]
ij ) =

[
1ᵀ

L∏
h=l+1

∣∣∣s[h] � w[h]
∣∣∣]

i

∣∣∣s[l]ij � w[l]
ij

∣∣∣ [ l−1∏
h=1

∣∣∣s[h] � w[h]
∣∣∣1]

j

(9)

In essence, the synaptic saliency of a weight’s sign is the product of all the weights multiplied
by their respective sign supermasks that have the weight’s sign within the path from the input to
the output layer. To further promote hardware efficiency, we employ global structured pruning by
scoring groups of weights by channels in convolutional layers and nodes in fully-connected layers.
The prune score for the i-th channel or node in a layer as ‖w[l]

i �∇sR
[l]
SF,i‖2. Additionally, we keep

the first few layers and only prune from the latter layers of the model with a prune rate pr.

3.5 State of the Art

FedMask [Li et al., 2021] is the closest in spirit to our work. However, its pruning method is data-
dependent, and hence, have to be performed on client devices, resulting in increased computational
load on the resource-constrained clients. Additionally, its weight transformation space is confined
to the binary supermasking Ub ∈ U , where a local binary supermask mk ∈ {0, 1} is learned in
the training stage in contrast to the binary sign supermask. Effectively, FedMask further performs
unstructured pruning during the training stage with no communication or computation advantage.
Contrarily, HideNseek maintains all the weights after the pruning stage allowing for a greater model
capacity.

4 Experimental Setup

4.1 Datasets & Models

We evaluate HideNseek on two applications, including image classification and human activity
recognition, using the EMNIST [Caldas et al., 2018] and HAR [Anguita et al., 2013] datasets,

5



respectively. EMNIST is a handwritten character recognition task involving 28×28 grayscale im-
ages belonging to 62 classes (upper and lower case letters and digits) already partitioned accord-
ing to the writers. Thus, each writer is considered a client. The HAR dataset consists of sensor
data (flattened into an 1152-valued vector) generated by users performing six possible actions (i.e.,
classes). To further study the impact of statistical heterogeneity on the performance, we follow prior
works [Zhu et al., 2021] and simulate Non-IID data on MNIST [LeCun et al., 1998] dataset via
Dirichlet sampling Dir(α), where a smaller value of α denotes greater heterogeneity (see Figure 5
in Appendix B). We employ the VGG9 and multilayer perceptron (MLP) for the image classification
and activity recognition tasks, respectively, with model configurations (see Table 5 in Appendix C).
We enable pruning for the last four convolutional layers in VGG9 and the first two hidden layers in
MLP.

4.2 System Implementation

We implement HideNseek and baselines with PyTorch (v1.8.0) [Paszke et al., 2019] on a server
equipped with a single Nvidia RTX 3090 GPU. We experiment with a total of K clients set to
160 and 320 for MNIST and EMNIST datasets and 30 for the HAR dataset. We randomly sample
ρ = 10% of participating clients that perform E = 5 local epochs during each communication
round with a total of 300 rounds for MNIST and EMNIST and 200 rounds for HAR. Weights and
sign supermasks are initialized using Kaiming uniform [He et al., 2015] and uniform distribution
U(−1, 1) respectively. We perform one-shot pruning for 100 iterations in HideNseek (according to
[Tanaka et al., 2020]) and one epoch for FedMask and Signed on the last four layers of the VGG9 and
the first two hidden layers of the MLP with the pruning rate pr = 0.8 (80% of the weights are kept).
We employ the SGD optimizer with a learning rate η = 0.001 for FedAvg, FedMask and Signed,
η = 0.01 for BNNAvg and η = 10 for HideNseek, and momentum µ = 0.9 for all algorithms
chosen empirically. We repeat every experiment thrice with different seeds for reproducibility.

4.3 Baselines

We evaluate HideNseek by comparing its performance against several baselines. We include Fe-
dAvg [McMahan et al., 2017] to realize the performance of the model when trained at full capacity.
FedMask [Li et al., 2021] is the closest in spirit to our work and state-of-the-art when it comes
to applying LTH for the federated setting with client-side pruning and learning binary supermasks.
We also borrow their BNNAvg baseline which applies FedAvg to train binarized neural networks
(BNN) [Courbariaux et al., 2016] with the weights and activations quantized by their signs. We also
implement an extension of FedMask we call Signed where we replace binary supermask with sign
supermask and change their binarizing function from sigmoid to tanh.

5 Results

5.1 Training performance

We first compare the training performance by reporting the inference accuracies in Table 1 between
HideNseek and the baselines. The inference accuracies were measured by taking a weighted average
of the client’s inference accuracies based on their local test data, which are weighted based on the
number of test samples in their local dataset. While HideNseek performs expectedly worse than
the FedAvg which trains the full model and serves as the upper bound in training performance,
HideNseek in general, outperforms FedMask, Signed and BNNAvg across tasks. It is worthwhile
to mention that the performance improvements are significant for HAR and MNIST datasets with
lower heterogeneity at α = {1, 10} with inference accuracies higher by 24.1-40.6% for HideNseek
compared to FedMask. HideNseek performance gradually degrades for MNIST (α = 0.1) with
higher heterogeneity and EMNIST with a large number of classes. This finding can be attributed to
the fact that HideNseek employs a shared global feature extractor among the baselines that utilize
pruning. While it is challenging to learn generalized features among clients, the performance is still
approximate to both FedMask and Signed which learn a more personalized feature extractor. Yet,
HideNseek scores higher than FedMask by 2.09% and 19.62% for EMNIST and MNIST(α = 0.1).

We further compare the training performances by plotting the inference accuracies against the com-
munication round. In the case of HAR dataset in Figure 2(a) and MNIST dataset in Figure 3,
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Table 1: Inferences accuracies of baselines and HideNseek on different datasets.
Algorithm EMNIST MNIST HAR

Non-IID α = 0.1 α = 1 α = 10 Non-IID
FedAvg 94.41 ± 0.06 98.81 ± 0.10 99.23 ± 0.05 99.38 ± 0.05 93.37 ± 0.22

BNNAvg 29.09 ± 1.27 51.80 ± 0.45 54.39 ± 0.16 64.62 ± 0.15 66.50 ± 0.57
FedMask 67.09 ± 0.23 57.73 ± 0.21 67.46 ± 0.40 84.41 ± 0.12 81.93 ± 0.55
Signed 69.99 ± 0.76 59.45 ± 0.26 72.17 ± 0.19 86.69 ± 0.12 76.30 ± 1.04

HideNseek 69.18 ± 5.58 77.35 ± 0.81 94.97 ± 0.64 96.69 ± 0.56 90.60 ± 0.30

(a) HAR (b) EMNIST

Figure 2: Performance on Non-IID EMNIST and HAR datasets.

(a) α = 0.1 (b) α = 1 (c) α = 10

Figure 3: Performance on MNIST with different data heterogeneities.

HideNseek converges faster than FedMask, Signed and BNNAvg. Whereas HideNseek experiences
higher volatility in training compared to the baselines in EMNIST dataset in Figure 2(b) and to some
extent in MNIST dataset with higher heterogeneity at α = 0.1 in Figure 3(a). Both of which again
point to the difficulty in training a shared global sign supermask under heterogeneous conditions.

5.2 Communication Cost

We then compare the communication cost for each client by measuring the upload and download
sizes in MB for each client during each communication round as shown in Table 2. First, BNNAvg
with binary parameters is four times smaller than FedAvg because 1 byte is the smallest element size
to represent a parameter in PyTorch. FedMask and Signed have a lower upload cost compared to
BNNAvg due to client-side pruning. HideNseek further reduces the download cost thanks to server-
side pruning. Furthermore, prune scores are more granular in HideNseek compared to FedMask and
Signed. This leads to smaller subnetworks since we drop all weights with scores equal to the thresh-
old (see line 15 in Algorithm 1). Overall, HideNseek demonstrates a reduction in communication
cost compared to the second-best performance (FedMask) by 20.9-39.7% times across all tasks.
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Table 2: Communication cost in MB for each client in a communication round
Algorithm EMNIST MNIST HAR

upload download upload download upload download
FedAvg 4.53 4.53 4.33 4.33 1.44 1.44

BNNAvg 1.07 1.07 1.07 1.07 0.36 0.36
FedMask 0.74 1.07 0.70 1.07 0.27 0.36
Signed 0.74 1.07 0.70 1.07 0.27 0.36

HideNseek 0.70 0.70 0.70 0.70 0.19 0.19

Table 3: Training times in seconds of baselines and HideNseek measure on Nvidia RTX 3090.
Algorithm EMNIST MNIST HAR

FedAvg 475.61 ± 0.54 587.43 ± 0.50 49.31 ± 0.15
BNNAvg 580.64 ± 0.42 693.76 ± 1.82 61.10 ± 0.42
FedMask 1150.77 ± 5.53 1200.71 ± 3.86 83.52 ± 0.12
Signed 979.90 ± 1.78 908.93 ± 3.46 76.34 ± 0.48

HideNseek 612.33 ± 2.35 705.16 ± 2.61 64.44 ± 0.72

5.3 Computation Cost

We report the computation cost by measuring the total training time on a single Nvidia RTX 3090
GPU (Table 3). FedAvg is the fastest primarily because of that it does not utilize any latent weights,
such as the masks in the case of Signed, FedMask and HideNseek. Even BNNAvg is slower than
FedAvg since the quantization must be performed at runtime and there is no built-in optimization in
PyTorch when dealing with 1-bit parameters. Still, HideNseek has lower training time compared to
FedMask and Signed because these baselines require the client-side one-shot pruning each time a
new client participates in the training. Additionally, FedMask is more computationally expensive as
it employs sparsity regularization term. Overall, HideNseek demonstrates a reduction in computa-
tion costs compared to FedMask by 22.8-46.8% across all tasks.

5.4 Active Clients

We now evaluate the impact of the number of active clients per communication round on the training
performance. Table 4 demonstrates the inference accuracies among clients on the MNIST (α = 1)
with different numbers of active clients K = {10, 20, 40}. While most baselines experience an
improvement in accuracy with more active clients, HideNseek experiences a minor drop of 3.92%
in performance when K quadruples. Still, HideNseek demonstrates better performance compared
to BNNAvg, FedMask and Signed by a significant margin. This signifies the scalability and partly
backs up the robustness of heterogeneity demonstrated in Figure 3.

5.5 Pruning Rate

From the results discussed above, it is evident that the VGG9 model is overparametrized for the
MNIST dataset proven by the high inference accuracies of FedAvg and HideNseek. Hence, we tried
a drastically more aggressive pruning rate of pr = 0.2 compared to previous experiments where
pr = 0.8. As shown in Figure 4, the drop in performance is very marginal in the less heterogeneous
datasets α = {1, 10}, while there is a significant drop in the more heterogeneous dataset α = 0.1.
This demonstrates that the computation and communication advantage of HnS over baselines is
larger than the prior results without a noticeable accuracy drop in some cases when using a high
prune rate.

6 Related Work

Statistical Heterogeneity. After the seminal work on federated learning [McMahan et al., 2017],
immediate advancements sought to tackle the problem of statistical heterogeneity in federated learn-
ing by adapting personalization schemes. PerFedAvg [Fallah et al., 2020] integrates a model-
agnostic meta-learning approach into FedAvg for personalization. MOCHA [Smith et al., 2017]
introduces federated multi-task learning where each client is considered as a task. A plethora of
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Table 4: Inference accuracies when varying the number of active clients per communication round.
Algorithm K=10 K=20 K=40

FedAvg 99.23 ± 0.05 99.19 ± 0.05 99.25 ± 0.07
BNNAvg 54.39 ± 0.16 58.17 ± 0.16 61.78 ± 0.24
FedMask 67.46 ± 0.40 69.51 ± 0.22 72.31 ± 0.05
Signed 72.17 ± 0.19 73.02 ± 0.15 73.48 ± 0.01

HideNseek 94.97 ± 0.64 93.40 ± 0.61 91.05 ± 0.87

(a) α = 0.1 (b) α = 1 (c) α = 10

Figure 4: Performance on MNIST with different pruning rates.

works [Lin et al., 2020; Gong et al., 2021; Zhu et al., 2021] has also applied knowledge distillation
to learn a global surrogate model which teaches the clients’ local models. [Li et al., 2021] performs
personalization by allowing each client to learn a local binary supermask. In contrast, we employ
personalization by globally sharing all hidden layers of the model while fine-tuning the final layer
to the clients’ local data. This allows HideNseek to stably train the model by modifying weight
magnitudes for a small subset of the weights while quantizing the updates transmitted for all the
hidden layers. As such, HideNseek reduces the communication cost while maintaining better ability
in terms of learning data with varied heterogeneities as shown in Figure 3.

Communication and Computation Cost. Another significant issue in federated learning is the
increased communication and computation cost on client devices when optimizing and transmitting
the weights. FedProx [Li et al., 2020] alleviates this issue via allowing training preemption and par-
tial updates, and FedPAQ [Reisizadeh et al., 2020] allows periodic averaging and quantizing model
updates. Several works have also introduced variations of pruning and dropout [Diao et al., 2021;
Horvath et al., 2021; Bouacida et al., 2021] for model compression. For example, FedMask applies
LTH [Frankle and Carbin, 2018] by performing one-shot pruning at the client-side and learning a
local binary supermask that is quantized during communication. However, the binary supermask
learned is essentially unstructured pruning with no computational advantage and limits model ca-
pacity. We thus replace the binary supermask with a sign supermask for faster convergence and
employ data-agnostic pruning at the server to reduce computational load on the client.

7 Conclusion & Future Work

In this work, we have introduced HideNseek which applies the lottery ticket hypothesis under the
federated setting by optimizing the signs of a synaptically salient subnetwork of the model. To
further reduce computation load on the client, we perform one-shot pruning at initialization on the
server-side using the data-agnostic approach and optimize a sign supermask that is quantized when
transmitting model updates. Empirical results suggest that HideNseek demonstrates better inference
accuracy than the state-of-the-art in general while considerably reducing the communication cost
and training time. Nevertheless, an imminent challenge faced is that the memory cost incurred by
employing straight-through-estimators is substantial. Therefore, in the future, we will explore the
efficacy brought by employing a binary optimizer [Helwegen et al., 2019] that only modifies signs
of weights without the need for latent parameters like the sign supermasks.
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8 Broader Impact

In this work, we propose an algorithm in the field of federated learning which originated from the
need to develop deep learning applications in the wake of recent advances in data protection regu-
lations such as the GDPR [Viorescu et al., 2017]. Furthermore, we explore an approach to reduce
communication and computation costs on battery-powered mobile devices to reduce environmental
impact. While our work demonstrates energy-saving implications from a theoretical standpoint, we
hope future works will further delve into system optimization geared towards energy conservation.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 1998.

Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. Fedmask: Joint computation
and communication-efficient personalized federated learning via heterogeneous masking. In Pro-
ceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, pages 42–55,
2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and
Systems, volume 2, pages 429–450, 2020.

11



Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. volume 33, pages 2351–2363, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
gari. What’s hidden in a randomly weighted neural network? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quan-
tization. In International Conference on Artificial Intelligence and Statistics, pages 2021–2031.
PMLR, 2020.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. Advances in neural information processing systems, 30, 2017.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. 33:6377–6389, 2020.

Razvan Viorescu et al. 2018 reform of eu data protection rules. European Journal of Law and Public
Administration, 4(2):27–39, 2017.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. Advances in neural information processing systems, 32, 2019.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heteroge-
neous federated learning. In International Conference on Machine Learning, pages 12878–12889.
PMLR, 2021.

12



A Algorithm

Algorithm 1 summarizes the training procedure of HideNseek. Note that 1 in line 15 is a threshold
function (as opposed to the identity matrix in Equation 9).

Algorithm 1: HideNseek
1 Procedure ServerRuns:

Input: set of K clients S ← {C1, C2, . . . , CK} with data (xk, yk) on k-th client device
2 randomly intialize DNN with weights w0

3 initialize the global sign mask s0 with signs of w0

4 w0 ← ServerPruning(w0, s0) // one-shot pruning 1 in Figure 1
5 for each round t = 1, 2, . . . , T do
6 c← max(K × ρ, 1) // select c active clients from K available

clients with random sampling rate ρ
7 St ← {C1, C2, . . . , Cc} // selected clients
8 for Ck ∈ St in parallel do
9 st+1

k ← ClientUpdate(Ck, s
t � stk) // 2 and 4 in Figure 1

10 st+1 ← aggregate({st+1
1 , . . . , st+1

c }) // using Eq. (8) ( 5 in Figure 1)

11 Function ServerPruning(w, s):
// No. of iterations set to recommended value following [Tanaka
et al., 2020]

12 for each round e = 1, 2, . . . 100 do
13 S

[l]
SF,i ← ‖w

[l]
i �∇sR

[l]
SF,i‖2

14 τ ← pr percentile score in SSF

15 m
[l]
i ← 1(S

[l]
SF,i > τ)

16 w
[l]
i ← w

[l]
i �m

[l]
i

17 return w
18 Function ClientUpdate(Ck, s

t−1
k ):

// ( performs 3 in Figure 1)

19 ŝtk ← initialize real-valued sign mask from st−1k
20 B ← split local data into batches
21 for batch (xb, yb) ∈ B do
22 ŝtk ← ŝtk − η∇ŝtk

L[f(xb;w
0 � sign(ŝtk)), yb] // η is the learning rate

23 stk ← sign(ŝtk) // binarize the real-valued sign mask

24 return stk

B Simulating Non-IID Data

Figure 5 depicts the effect of the parameter α on the label distribution among clients when employing
Dirichlet sampling to partition MNIST dataset in Non-IID manner.

C Model Configurations

The model configurations employed in this work are depicted in Table 5. For VGG9, each
ConvBlock(N) is composed a convolutional layer with N channels with size 3, a BatchNorm layer
followed by ReLU activation. Each MaxPool2d layer has a kernel size and stride length of 2. The
number of nodes in the final fully connected layer are 62 or 10 depending on EMNIST or MNIST
dataset.
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(a) α = 0.1 (b) α = 1 (c) α = 10

Figure 5: Label distribution among 20 clients for MNIST dataset with dirichlet sampling at different
α.

VGG9 MLP

ConvBlock(32) Linear(300)
MaxPool2d ReLU

ConvBlock(64) Liner(100)
MaxPool2d ReLU

ConvBlock(128) Linear(6)
ConvBlock(128)

MaxPool2d
ConvBlock(256)
ConvBlock(256)

MaxPool2d
Flatten

Linear(62 or 10)

Table 5: Model configurations.
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