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MyoKey: Inertial Motion Sensing and
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Abstract—Usability challenges and social acceptance of textual input in a context of extended realities (XR) motivate the research of
novel input modalities. We investigate the fusion of inertial measurement unit (IMU) control and surface electromyography (sEMG)
gesture recognition applied to text entry using a QWERTY-layout virtual keyboard. We design, implement, and evaluate the proposed
multi-modal solution named MyoKey. The user can select characters with a combination of arm movements and hand gestures.
MyoKey employs a lightweight convolutional neural network classifier that can be deployed on a mobile device with insignificant
inference time. We demonstrate the practicality of interruption-free text entry with MyoKey, by recruiting 12 participants and by testing
three sets of grasp micro-gestures in three scenarios: empty hand text input, tripod grasp (e.g., pen), and a cylindrical grasp (e.g.,
umbrella). With MyoKey, users achieve an average text entry rate of 9.33 words per minute (WPM), 8.76 WPM, and 8.35 WPM for the
freehand, tripod grasp, and cylindrical grasp conditions, respectively.

Index Terms—EMG, Electromyography, Micro-gestures, Mobile input techniques.
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1 INTRODUCTION

Augmented, mixed, and virtual reality (AR/MR/VR),
located at the different points of the extended realities (XR)
spectrum, struggle to achieve wide adoption and slowly
approach the so-called plateau of productivity. However,
with an ongoing process of miniaturization of electronic
components, increasing density of pixels in head-mounted
displays, and advancements in deep learning applications,
XR is getting yet another round of attention. Notable ad-
vancements include Google Glass Enterprise 2 [1], North
Focals [2]; a constantly growing entertainment-centered
VR/MR market [3]; and relevant research projects [4], [5],
[6], [7], [8], [9].

In opposition to the growing complexity and diversity
of output techniques (retinal projection [10], pupil tracking
for VR/MR helmets for sharper imagery [11] or waveguide-
coupling AR displays [12], [13]), input modalities are limited
to a relatively conservative set of physical keyboards and
touch surfaces. Small-sized touch interfaces employed by
smartglasses for text input cumber interaction with the
digital overlays [14] and are usually inconvenient for both
the direct user and a bystander [15]. For example, Google
Glass users have to continuously hold an arm at eye level to
select characters. Alternative approaches, such as head-gaze,
vision-based hand gestures (e.g., Microsoft Hololens) might
be tedious [16], suffer from optical occlusion, and raise ques-
tions of social acceptance [17] and bystanders’ privacy [18].
Speech-based input is not suitable for password and URL
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input since it might disclose sensitive information [4] and
be inappropriate in noise-free environments [17].

Thus, it is necessary to explore alternative modalities and
design approaches for text input on XR headsets and smart
glasses. Application of Surface electromyography (sEMG), a
widely applied technology in the area of active prosthetics,
might have been overlooked in general-purpose human-
computer interaction (HCI). sEMG is an imagining tech-
nique used to evaluate myoelectrical currents elicited in
muscles [19]. It is used as a modality to recognize intended
gestures of amputees to control upper [19], [20] or lower
limb [21] prosthesis, and in rehabilitation and sports [22].
The popularity of wrist-worn devices [23] that can host
sEMG electrodes, and the existence of commercial sEMG-
enabled wearables [24], [25], demonstrate the potential of a
more diverse sEMG-based HCI [26].

However, it is challenging to design and implement a ro-
bust and efficient sEMG-based text entry system: such a sys-
tem might suffer from an increasing number of gestures [27];
high offline recognition accuracy will not necessarily be
maintained in real-time, as the signal-to-noise ratio (SNR) of
sEMG signals is affected by the user’s posture, gesture’s in-
tensity, electrode’s position and electrical interference from
nearby devices [28]. Thus, it is impractical to directly map
alphanumerical symbols to a large number of gestures.
Also, such a large set of gestures will discourage new users
due to a high learning burden to memorize gesture sets.
Therefore, an additional modality shall be considered as an
auxiliary modality to tackle these limitations. Eventually,
touchless multi-modal sEMG-enabled input protocols can
enrich interaction experiences in XR but also eliminate the
potential source of viral and bacterial contamination [29].

In this paper, we present MyoKey, a multi-modal text
entry system we implemented for textual input on XR head-
sets. Myokey supports three sets of grasp micro-gestures
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Fig. 1: The text entry layout of MyoKey

for text entry in a freehand condition and two busy-hand
scenarios. MyoKey detects the user’s forearm orientation
via an inertial measurement unit (IMU) and myoelectric
signals by contracting muscles to select characters and
words in a full QWERTY keyboard layout. In MyoKey, as
depicted in Figure 1, the entire keyboard is divided into
ten columns, each column contains four selection options
of three characters and one (out of three) suggested word.
The two modalities work complementary – the IMU-driven
forearm movement first maps to a target column, and a
gesture disambiguates the four options in the column. Ac-
cordingly, we design a deep learning classifier and a voting
system to support robust EMG-based gesture recognition
within a reasonable time window for the highly repetitive
text entry task. It is important to note that we incorporate
a recalibration mechanism to update the trained gesture
recognition model to overcome the session-dependency of
sEMG [30] when a user takes off MyoKey and wears it again.
Additionally, MyoKey has the prominent feature of grasp
micro-gestures [31]. Figure 2 depicts the gestural inputs in
MyoKey under conditions of (a) freehand interaction and
busy-hand interaction, e.g. holding (b) an umbrella or (c) a
pen. Thus, MyoKey supports subtle interactions in the wild.

To evaluate MyoKey, we recruited a total of 12 par-
ticipants. Throughout five text entry sessions, MyoKey
achieves an averaged text entry rate of 9.33 words per
minute (WPM) under the freehand scenario and 8.76 WPM
and 8.35 WPM in the tripod and cylindrical grasp scenarios,
respectively. As MyoKey is supported by a deep learning
gestural recognition system, the error rate maintains at a
practical level ranging from 6.88% to 9.81% for the three
scenarios. It is worth mentioning that MyoKey considers
user mobility by enabling grasping objects during text entry
tasks outdoors.

In summary, our contributions are:
(1) We design an IMU-driven and EMG-based text entry
system for XR headsets and a corresponding QWERTY
keyboard layout designated for the multi-modal solution.
(2) We develop a lightweight sEMG pattern recognition
deep learning classifier, that can run on mobile devices,
achieving state-of-the-art accuracy with inference time be-
low 10 ms on multiple gesture sets in real-time and a
recalibration algorithm to mitigate potential deterioration in
sEMG recognition over time.
(3) We devise three different gesture sets for a single-handed
eyes-free text entry system in several contexts, including
micro-grasping gestures for interruption-free input while
holding an object.

(a) Freehand (b) Cylindrical grasp (c) Tripod grasp

Fig. 2: Usage scenarios of the proposed solution: users can
provide inputs when their hands are not occupied (Fig-
ure 2a), or when holding an object (Figure 2b, 2c).

2 RELATED WORK

Human muscles are controlled by neural impulses originat-
ing in the motor cortex of the brain and propagating across
the peripheral nervous system towards motor neurons. The
activity of the motor neurons is characterized by the flow
of ions within muscle tissue. Intensity and polarization
of the flow can be measured using needle-like electrodes
implanted into the tissue itself (Electromyography) or on
the adjacent surface of the skin (surface Electromyography,
sEMG) [32]. sEMG capturing devices are characterized by
temporal (sampling frequencies, in Hz, or samples per
second) and spatial (number of electrodes and available
precision) resolutions. In our experiments, we rely on the
certain sEMG recording hardware, Myo band by Thalmic
Labs. Myo Band samples the signal on the frequency of 200
Hz employing 8 electrodes with 16-bit resolution. sEMG
signal acquired by the Myo Band for different gestures is
visualized in Figure 3.

The acquired sEMG signal is classified with respect
to performed gestures. Cognolato et al. [33] presented
the MeganePro database, where multi-modal data (sEMG,
IMU, gaze tracking, video recording, behavioral and clinical
records) from intact subjects and amputees are aggregated.
Kernel Regularized Least Squares (KRLS) classifier reported,
for a window of 400 samples (approximately 208 ms) and
95% overlap between successive windows, 82% (for in-
tact) and 63% (for subjects with amputated upper-limb)
accuracy.Gesture recognition frameworks are also used in
active prosthesis control to identify gestural intentions of
amputees and micro-gestures of residual limbs [20]. Addi-
tionally, sEMG have been used to recognise held objects [34]
and as a biometric modality to unlock smartphones [35].

sEMG pattern recognition accuracy can vary signifi-
cantly due to several factors. One of them is the overtime
smearing of the signal. To mitigate the non-stationary nature
of sEMG, Zhai et al. [19] proposed a self-recalibrating clas-
sification routine with a pre-trained 2-layer convolutional
neural network that recalibrates itself every session based on
predictions from previous sessions. Moreover, there exists a
gap between offline accuracy and real-time utility, where
the gap is derived from gesture intensity, limb position,
electrode shift, and transient changes in the signal [28].

MyoKey serves as a groundwork leveraging the EMG
sensors for text entry tasks on wearable computers achiev-
ing high usability and user acceptance. The prior works
propose the non-standard keyboards [36] and users need to
learn the new text entry layouts, in addition to the burden
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(a) Relaxed state. (b) Fist. (c) Point up. (d) Thumb up. (e) Point down.

Fig. 3: Representation of sEMG signal of different gestures (Participant 1, freehand interaction).

from practicing new gestures. MyoKey leverages the user’s
ingrained memory of the standard QWERTY keyboard lay-
outs [14], in which the familiar layout can significantly
reduce the learning efforts and hence improve usability.

2.1 Paradigm shifts in interaction modality
Soft keyboards for smartphones and wearable computers
have received increasing attention [37]. The key challenge
of typing on soft keyboards on wearable computers is
the constrained size of touch interfaces [38]. Thus, many
modalities have been employed for text entry on head-worn
computers, including touch-based [39], IMU-driven [40],
vision-based [41] [14], force-assisted [42], and electroen-
cephalography (EEG) [43]. However, these modalities have
their respective issues. It is impractical to accommodate a
full-size QWERTY keyboard on a constrained-size headset
with touch-based input [42]. Vision-based and IMU-driven
interaction triggers lifting arms and intensive body move-
ments, leading to ergonomic issues [14] while force-assisted
and EEG-based interaction suffer from relatively low input
rate [44] [42] [43].

Among the aforementioned modalities, sEMG has
prominent advantages of subtle and non-invasive inter-
action. The advantage motivates us to explore the input
methods with an alternative modality for the non-touchable
interfaces on head-worn computers [45]. To the best of our
knowledge, very limited works employ surface electromyo-
graphy as the key modality for text entry. Existing works
primarily focus on the disability and gestural inputs [46].
For example, MyoTyper [36] is an sEMG-based text entry
system designated for amputees, resulting in a limited text
entry rate of 2.56 wpm with a significantly high error rate
(30%). In contrast, MyoKey demonstrates the practicality
of EMG-based text entry for prospective usage with head-
worn computers.

2.2 Alternative interfaces on shrinking headsets
Text entry interfaces have vastly evolved in various mobile
devices. Besides the full traditional QWERTY keyboards,
other options are being explored, like cubic layout [47]. Nu-
merous alternative text entry systems have been proposed,
in search of simplified interfaces accompanied by effective
interaction for constrained wearable computers. An early
work [48] considers tablets owning limited screen real estate
and therefore proposes an ambiguous QWERTY keyboard
shrunken to about one-third size of a full default keyboard.
However, the screen real estate of head-worn computers
becomes even smaller [14] in which the digital contents are
not directly manipulable [42]. In PalmType [41], a digital

overlay of full QWERTY keyboard maps on the user’s palm
by the see-through display of a head-worn computer. The
users can tap on the character keys within the palm area,
supported by an indoor time-of-flight camera decoding the
tap gestures. However, PalmType not only neglects mobility
but also occupies the majority of the screen and conse-
quently hinders the seamless interaction between the users
and the physical environment. Different from above vision-
based [49] and force-assisted [42] approaches, this paper
focuses on the interaction design of EMG-based text entry.
However, the existing interaction design leveraging sEMG
as an interaction modality is mainly limited to the gestural
interaction, and the sEMG-based text entry interface is not
appropriately addressed. A prototype named MyoType1

allows users to input alphabetic and numerical symbols
with static gestures. However, semaphoric gestures usually
suffer from low input speed due to recognition overheads,
and long-term usage is prone to fatigue [15].

2.3 Text Entry in the wild

Walking users and cluttered backgrounds can negatively
impact the user performance of text-entry interfaces in
the wild [50], [51], [52], [53] Only a few works address
the mobility issue in the user interaction with head-worn
computers, which evaluate factors in real-world situations
such as cluttered background [54], text reading speed in
a walking path with obstacles [55], reading text [56] and
visual cues [57] with peripheral vision, and text readability
and legibility in a shaky condition [58]. Nevertheless, these
works neglected the possibility of text entry in a common
mobile scenario of object holding.

Even though the existing studies on object holding
have tackled the issues such as the recognition of grasped
object [34] and their gesture design [31], as well as the
gestural recognition of holding an imaginary object (e.g.
smartphone [59]), this paper is the first effort to consider the
text entry when our hands are usually occupied by objects
in a mobile situation. By employing EMG and IMU as the
key modalities, MyoKey is a multi-modal text entry system
that enables users to perform text entry in multiple scenarios
including object grasping situations.

3 SYSTEM DESIGN

3.1 Text Entry Interface and Interaction Design

MyoKey employs the standard QWERTY layout containing
26 roman characters, a backspace key, and the white space

1. https://github.com/Etiene/MyoType/
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key. The familiarity of the QWERTY layout enables faster
pick-up rates to novice user [60]. Apart from the 26 char-
acters, the rightmost column of the keyboard consists of
the letter ‘p’ and two backspace keys ‘¡’, while two white
space keys ‘ ’ are located at the bottom row of the 8th
and 9th columns. Above the QWERTY layout, three slots
are designated for the top-3 recommended words. Figure 1
depicts the QWERTY layout in the proposed text entry
system solution.

Employing sEMG as an input modality for text entry
tasks is challenging, mainly because it is difficult to map the
gestures with all-discrete keys on the keyboard. The prior
works on sEMG-based text entry solutions focus on groups
of disabilities. Their most common approaches are either
the sEMG-based mouse pointing on unambiguous character
keys [61] or gestural mapping to discrete character keys [36],
resulting in less usable text entry performance. In addition,
another evidence [27] shows that the recognition accuracy of
EMG-based gestures is inversely proportional to the number
of gestures.

Instead of considering the approach of direct gesture-key
mapping, we propose a divide-and-conquer strategy with
an additional modality of IMU-driven forearm orientations
in MyoKey to keep a minimal number of gestures. The
forearm orientation maps to the columns, and each column
corresponds to four options of three character keys and
one recommended word. Therefore, MyoKey applies an
ambiguous keyboard on the QWERTY layout, in which the
ten columns are divided horizontally and evenly, and the
three slots of word recommendations are separated into
the ratio of 3:3:4. The disambiguation of the four options
in every column relies on the four discrete EMG-based
gestures (more details in Sections 3.2 and 3.3). As shown
in Figure 1, a slider locates between the recommended
words and the character keys. The slider serves as the visual
cue to indicate the forearm orientation with respect to the
keyboard columns. In addition, we reserve two keys for the
backspace and the white space so the user can reach these
key options in alternative columns and rows.

The user selects the column that contains the target input
letter by alternating the direction of pointing around the
yaw axis within a certain adjustable angle range (from 30
to 90 degrees, see subsection 4). The selected column is
highlighted with a light blue color and expanded horizon-
tally. Such an enlargement is not only visual, the yaw angle
range that is related to the selected column is also increased
to eliminate unwanted switching between columns caused
by the change in orientation from walking or performing a
character-selection gesture.

MyoKey serves as an alternative solution for the text
entry on mobile headsets (freehand interaction) and demon-
strates the prominent features in multiple mobile usage
scenarios (busy-hand interaction). Thus, we define both
freehand and grasp micro-gestures (see Table 1).
Freehand interaction: when the interaction is performed by
empty hand mid-air or in a relaxed stance alongside the
body. In the case of freehand interaction, we propose to use
intuitive gestures of choosing top or bottom row by pointing
up or down, respectively. The middle row is being selected
by performing a horizontal thumb gesture. An additional
factor contributing to the selection of gestures is the fact

TABLE 1: Input with freehand/ micrograsp gestures.

Freehand Tripod grasp Cylindrical grasp
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that when performing certain gestures (e.g., wave-in or
wave-out) orientational angle of the band might change
significantly enough to change the input column.
Busy-hand interaction: when the input is performed with
a hand while holding an object in order to deliver an
interruption-free experience. Such interaction may include
text input while holding a heavy object (an umbrella or a
suitcase) or a small object (a pen or a stylus). For both cases,
we propose grasp gestures to disambiguate between keys in
the same column, as shown in Table 1. For the cylindrical
grasp scenario (e.g., umbrella), we propose thumb up for
the top, index finger flexion for the middle, and little finger
flexion for the bottom row, respectively. In the case of
tripod grasp (e.g., continuous input while holding a pen)
pointing up for the top, little finger flexion for the middle,
and pointing down for the bottom row are used [62]. In
both scenarios squeezing the held object corresponds to the
selection of a proposed suggestion.

The selection of these gestures is motivated by prior
work [31] and preliminary assessment from both, system
(recognition success and intensity) and user (intuitiveness
and simplicity of performance) side.

3.2 Gesture recognition
Once a column is selected, a gesture is recognized over
a time window (e.g., 100 ms, 200ms). The sensor does
not guarantee the exact number of delivered samples, so
samples are accumulated till their number reaches a certain
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threshold (e.g., 100 samples). In the proposed solution we
use a time window of 100 samples (see Figure 5). We employ
a convolutional neural network (CNN) consisting of two
convolutional layers and one fully-connected layer. The size
of the input is [8 × 100] ([channels × samples]); the first
convolutional layer compresses every single channel of the
input - it consists of 64 filters of size [1 × 25]. The second
convolutional channel (128 [8 × 4] filters) captures patterns
across all channels at once. Finally, there is a dense layer,
utilizing 500 units with a dropout rate of 50%, followed
by softmax with five label outputs. Output labels represent
recognized gestures: standby state (palm in case of freehand,
or holding an object in busy-hand interaction), three-row
selection gestures, and one suggestion selection.

3.3 Voting system

The integrated classifier achieves state-of-the-art [63], [64]
gesture recognition static accuracy of 98% (see subsection
4.2). Yet, online performance is affected by multiple fac-
tors [28]: gesture intensity, body and arm posture, slight
variations of the armband position. Those factors do not
alternate significantly during the collection of training (and
validation) set but might change afterward. To improve
the robustness of the system to the factors affecting online
performance, we introduce a voting system for gestural
input. That is, a character within a column is chosen only if
the classifier has recognized the same gesture multiple times
within a fixed amount of time. In other words, each charac-
ter within a column is associated with the number of votes
vc = k, k ∈ 0, 1, 2; once the classifier outputs the result,
the number corresponding to the output is incremented; a
character c is then selected if vc reaches a certain threshold.
In our system design, we set the default threshold as k = 2.
It is clear that in the case of k > 1, the time of inputting
each character increases. However, the increase of time is
mitigated by overlapping the time windows on which the
classifier’s votes are based. We measure and adjust window
overlap in percents (i.e. 0% overlap - windows have no
common samples, 50% - second half of the first window is
shared with the first half of the second window and so on).
We use a 50% overlap by default and fine-tune it based on
a user’s preference (e.g., selection of characters is perceived
to be too fast).

Once a selected character receives its first vote, it is
highlighted distinctively from other characters within a
column. If the character is finally selected for input, it is
highlighted in a darker color to notify a user of successful
input. Thus, another advantage of the voting system is that
a user has a chance to correct their gesture or even change a
column (and subsequently reset all received votes to zero) if
they notice that character that has received the first vote
is different from the intended one. The usage of such a
voting system leads to a trade-off between the robustness
of continuous classification and input time. Let us discuss it
in detail below.

3.3.1 Robustness of continuous classification
Single Voting System: Assume that the probability of
correctly classifying gestures is p. We put p as average
classification accuracy of the developed gesture classifier,

p = 0.943, for a window of 25 samples, as reported in
subsection 4.2). Next, the probability of inputting ten letters
in a row correctly by using a single gesture is as follows2:

P (C|k = 1) = p10 = 0.556 (1)

where C = {c1, ..., cn} represents a sequence of inputted
characters with length n with and k is the number of votes
used in the system.

Multiple Voting System: On the other hand, given a voting
system with the number of votes k = 2, the probability
of correctly inputting 10 intended symbols is increased
significantly. First, we compute the probability of inputting
a single correct character. In the voting system with k ≥ 2,
votes can be assigned to two other characters that are not
intended, e.g. for an intended character ’u’, two characters
(’j’ and ’m’) in the same column can receive votes from
the classifier and can be chosen for input if the number of
votes for any of those two reaches the threshold. Note that
we denote a correct (right) character as R and two wrong
characters as W1 and W2.

There exist three different cases when characters are
votes for in a sequence : (1) vote twice for the correct
character (1 outcome: RR), (2) vote once for a wrong
character and twice for the right character (4 outcomes:
RW1R,RW2R,W1RR,W2RR), and (3) vote twice for
wrong characters and twice for the right one (6 outcomes:
RW1W2R, RW2W1R, W1RW2R, W2RW1R, W1W2RR,
W2W1RR). Hence, the probability of choosing one right
character, c, within the voting system where k = 2 is:

P (c|k = 2) = p2 + 4× p2q + 6× p2q2 = 0.995, (2)

where p and q denote the probability of choosing the
right character, R, and wrong characters, W1 or W2, respec-
tively. Then, the probability of inputting 10 right characters
in a row is as follows:

P (C|k = 2) = P (c|k = 2)10 = 0.950, (3)

The multiple voting system with the smallest threshold
k = 2 significantly increases the accuracy of MyoKey when
typing sequences of characters. Simultaneously with the
increase in input accuracy, input time increases as well. We
discuss this trade-off in the following subsection.

3.3.2 Input time
Single Voting System: We first calculate the expected time
of inputting one character within the voting system with
k = 1 as a baseline. Let us put the window length wl equal
to 125 ms (approximately, 25 samples @ 200 Hz sampling
rate), and inference time τi = 45 ms (see 4). Thus estimated
time equals to:

Tk=1 = wl + τi = 170 ms (4)

Multiple Voting System: In the case of k = 2, we need
2, 3, or 4 time windows to input a character, as discussed

2. We calculate the probability based on two assumptions for sim-
plicity: (1) each trial is independent and (2) a user selects the column
correctly.



IEEE TRANSACTIONS ON MOBILE COMPUTING 6

Algorithm 1: Mistyped character correction algo-
rithm for the word prediction

Input: The typed characters C = {c1, c2, ..., cn}, The learend
probabilistic modelM

Output: The predicted words up to three candidates
1 candidates←M.predict(C)
2 if candidates 6= ∅ then
3 return Top3(candidates)
4 else
5 for i← n to 1 do
6 neighbor character list←

FindNeighborCharacters(ci)
7 for neighbor character ∈ neighbor character list do
8 C′ ← Swap(neighbor character, ci) in C
9 candidates←M.predict(C′)

10 if candidates 6= ∅ then return Top3(candidates)
11 end
12 end
13 end

in the previous subsection. Given the window overlap wo

equal to 62 ms (50% of the window), time required to have
two classification results t2 is (2wl − wo + τi); 3 results,
(t3 = 3wl − 2wo + τi) and four, t4 = (4wl − 3wo + τi):3

Tk=2 = p2∗t2+(4×p2q)t3+(6×p2q2)t4 = 238.757ms (5)

Assuming that the delay less than 300 ms is considered
acceptable for continuous classification in real-life applica-
tions [65], our voting system with k = 2 enables continuous
classification with high precision accurately for sequences
of characters (95% for 10 characters) within acceptable time
window (≈ 240ms). Furthermore, MyoKey can further re-
duce the input time by adopting bigger window overlap
sizes and smaller time windows with an expense of preci-
sion (see 4.2).

3.4 Further Optimizations

We now present further optimization techniques to improve
typing speed and decrease error rates. First, we employ the
probabilistic approach to predict the word that a user is
currently typing. For example, when a user wants to input
”weather” and has input ’w’ and ’e’ characters, the prob-
abilistic model of MyoKey tries to predict up to the three
most probable words such as ”we,” ”were,” and ”well.”

There exist many text entry studies [14], [44], [48] which
implemented word prediction or word disambiguation
models. However, their models, including the probabilistic
model in our first optimization, suffer severely when a user
inputs wrong characters while typing the current word.
For instance, if a user types ”weqt” instead of ”weat” (i.e.
mistypes ’q’ instead of ’a’), the probabilistic model fails to
predict the ”weather”. Thus, as our second optimization, we
develop an error correction algorithm for incorrectly typed
characters while a user is inputting the text in real-time. The
details of both of our further optimizations are as follows:

Probabilistic model for word prediction: We leverage the
probabilistic word prediction model for user input, which
relies on the unigram language model. The basic idea is

3. The assumption is that classification is done in parallel and in a
time shorter than the length of the time window, thus for multiple
classifications in a row, inference time is counted only once.

to calculate the posterior probability of all words in a pre-
trained language model given user inputs (i.e. few charac-
ters of the current word being typed by the user). After that,
based on the Bayes’ theorem, we compute the probability
of a complete word (e.g. ”weather”) from an incomplete
word of a few characters (e.g. ”wea”) and recommend the
top-3 most probable words. Given the typed characters
C = {c1, c2, ..., cn}, we search for the best and complete
word with various length (Wbest = {c1, c2, ..., cn, ..., cN})
within the lexicon, L, based on a corpus [66].

Wbest =∀W∈L P (W |C) (6)

According to the Bayes’ rule, we have:

Wbest =∀W∈L
P (C|W )P (W )

P (C)
(7)

where P (C) is constant for all candidates. P (W ) is the
word frequency derived from the language model. Instead
of using the spatial model as used in [60], we approximate
P (C|W ) by checking the candidate words from the high-
est frequency and including the words that start with the
typed characters.
Mistyped character correction: As our second optimization
approach to improve our system’s accuracy, we develop
a lightweight error correction algorithm. For example, a
user can mistype a character ’q’ instead of ’a’ in the target
word ’weather’. By utilizing the error correction algorithm,
MyoKey can still recommend the right candidate word
(”weather”) to the user. Algorithm 1 describes the over-
all process of the mistyped character correction algorithm
for word prediction in detail. Given the typed characters
C = {c1, c2, ..., cn}which may have a mistyped character in
any position from 1 to n and a learned probabilistic model
M, the goal is to find the most probable word candidates
(we predict up to three candidates based on our interface
design). For the first step, we search potential candidate
words using the learned probabilistic model M given the
user input C (see line 1). If candidate words exist from
the model, the algorithm returns the top three candidate
words (see lines 2-3). In the case when the user input C
may contain a mistyped character, the probabilistic model
fails and predicts no candidate words (see line 4). Then,
while we search through the characters from reverse order
(from cn to c1), we predict the candidate words again after
replacing the character ci with its neighboring characters
(see lines 5-12). The algorithm returns the found candidates
up to three words if they exist. Note that we consider
neighboring characters located in the same column in the
QWERTY keyboard since the neighboring characters in the
same column are most likely mistyped (e.g. neighboring
characters of ’a’ are ’q’ and ’z’).

Overall, integrating data from sEMG and IMU sensors,
our system consolidates positional data (column selection)
and recognized gestures (character within a column).

3.5 Recalibration Mechanism
We have established various heuristics and optimizations
to ensure the online gesture recognition performance of
MyoKey for a slight variation of sEMG signals of each par-
ticipant. However, it is well-known that gesture recognition
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TABLE 2: Order of scenarios for the participants

ID L/R handed Scenario 1 Scenario 2 Scenario 3

1 Right Freehand Tripod Cylindrical
2 Right Freehand Cylindrical Tripod
3 Right Tripod Freehand Cylindrical
4 Right Tripod Cylindrical Freehand
5 Right Cylindrical Freehand Tripod
6 Left Cylindrical Tripod Freehand
7 Left Freehand Tripod Cylindrical
8 Right Freehand Cylindrical Tripod
9 Right Tripod Freehand Cylindrical
10 Right Tripod Cylindrical Freehand
11 Left Cylindrical Freehand Tripod
12 Left Cylindrical Tripod Freehand

models using sEMG suffer from an additional variation of
data derived from different recording sessions. For example,
a user takes MyoKey off and wears it again later, the
trained gesture recognition model’s performance may drop
significantly [30], [67]. One way to address this issue is to
collect new batches of labeled data before every session; the
downside of this approach is the burden for users.

To overcome the session dependency, we introduce a
recalibration mechanism to ensure reasonably high perfor-
mance of the gesture recognition model. Our mechanism
employs transfer learning [68] and captures user feedback
(i.e., user’s selection of recommended words), which avoids
cumbersome data collection procedures before a new ses-
sion. First of all, we adopt the idea of transfer learning
that fine-tunes the pre-trained model with new input data
because it fits well with our scenario of a new recording
session. In detail, we sample the small number of sEMG
signals of a user when the user puts MyoKey on again and
use them to fine-tune the pre-trained gesture recognition
model for the participant. Then, to determine which sEMG
signals to sample and identify the signals’ labels, we utilize
the user feedback on recommended words from our system.
For instance, a user intends to input ”develop”. Then, after
the user input the characters ’d’, ’e’, and ’v’, MyoKey would
correctly recommend the word “develop” so that the user
can click on this word for the next input word. Using this
user feedback, we obtain new input data of sEMG signals at-
tached with ground-truth labels to fine-tune the pre-trained
gesture recognition model in new recording sessions. Note
that when a user wears MyoKey again, the user does not
need to go through another data collection procedure to
update the gesture recognition model since MyoKey uses
the user’s usage patterns as new inputs and labels.

4 SYSTEM EVALUATION

We recruited 12 participants for the study (Age 23 – 33, all
males, four left-handed). For right-handed, the band was
placed on the right forearm; for left-handed - on the left.
The surface of the band, including electrodes, was disin-
fected before every experiment for each participant. The
user interface, keyboard, and experiment control elements
were displayed on a 15-inch screen, placed on table 1-1.5m
away from a participant [42], [69].

In our experimental setup, the testing interface, as pre-
sented in Figure 4, displays the target text, which is shown
in light gray color, and the typed characters (i.e. inputs
by user) overlays above the already input text in black

Fig. 4: The text entry layout of MyoBoard

color. The word phrases are extracted from Mackenzie’s
phrase set [70] in all experimental sessions. As depicted in
Figure 1, the right part of MyoKey contains settings and
control elements to run evaluative experiments. The top
region of the button trios allows the experiment conductor
to clear the user’s input, and pick a new target phrase or
word from the phrase set. Below, the currently recognized
gesture is depicted for the reference of an experiment par-
ticipant, among with tick-boxes that enable/disable sug-
gestion prediction. Next, the control elements allow the
experiment conductor to reset the position of the band that
corresponds to selection of the most right (last) column:
utilized hardware and software stack does not implement
measures against IMU drift [71] and as long as we expect
text input to take significant time in some scenarios, the
drift can cause inconvenience and irritation from shifting
input angle. Downward, control elements are used to set the
number of votes, overlap in decimal format, and selection
angle range. The lowest two drop-down lists allow choosing
the employed deep learning model and interval, offering
additional flexibility on recognition time and accuracy.

Participants were seated in a chair with armrests and
were required to rest the elbow of the active hand on the
corresponding armrest. For the cylindrical grasp scenario,
we used a tennis racket that was grasped in an umbrella
fashion (see Table 1) in order to report exact weight (260g)
and not obstruct the vision. The table surface, as well
as the tennis racket’s handle, was disinfected in between
experiments for different participants.

Software components were implemented using Python
3.7.5, Tensorflow 2.0.0 GPU (CUDA 9.2.148); inference time
for time window of 100 samples that is used in estimating
time in Section 3.3.2 (45.629± 3.606 ms) was measured on a
laptop with 16 GB RAM, 4 cores @ 2.8 GHz and GeForce(R)
GTX 1050 with 2 GB VRAM. Additionally, we convert our
deep learning model for deployment on a mobile device to
show the feasibility of a ubiquitous application [72], [73]. We
use TensorFlow-lite-GPU application with GPUDelegate4

enabled. The developed application was further deployed
on Samsung Galaxy A51 (SM-A5115F), running on Octa-
Core 64bit Exynos 9 Octa 9611 (10nm) processor. We report
inference time on the mobile device as following: for the
window time of 100 samples - 8.560 ± 0.92 ms; for 50
samples - 4.609 ± 1.11 ms; for 25 - 3.487 ± 1.14 ms; for
10 samples - 2.684 ± 1.30 ms. Thus, the proposed solution
is capable of running on up-to-date mobile devices with
insignificant inference time. The CNN classifier does not
require any preprocessing and Myo armband filters sEMG

4. https://www.tensorflow.org/lite/performance/gpu
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TABLE 3: Spatial variations during the recording phase

Horizontal angle variation Vertical angle variation

on-board (notch filter 50/60 Hz, low-pass filter 20 Hz, high
pass at 500 Hz).

4.1 Procedures

Each participant ran over a total of three sessions for
all three scenarios (freehand, tripod grasp, and cylindrical
grasp). Each scenario includes three major phases: data
recording, training of the model, and text entry evaluation.
We employ a full counterbalancing strategy [74], in order to
reduce the carryover effects threatening to undermine our
findings. That is, without full counterbalancing, the latter
sessions may own advantages from the learning effects ac-
quired in earlier sessions. We have two groups of six people,
and within each group the order of the online experiments
is different. Table 2 shows the full balancing of sessions
employed in our experiment with 12 participants.

During the recording phase, sEMG signal for different
gestures is collected: each participant was asked to perform
and hold each gesture for the current scenario (see Table 1)
for 30 seconds. Within each recording, the participants were
asked to move their arm with a fixed gesture along the
horizontal trajectory and to variate vertical angle as shown
in Table 3. This is done in order to capture multiple varia-
tions of sEMG noise that can be generated by other muscles
controlling the position of an arm and not related to the
gesture itself [28].

After the training set is collected, the model is trained.
The procedure takes less than a minute, in a meantime, a
short demonstration of text input within a scenario is done.
Next, the first trial of text input is attempted. Participants
were given around 2-3 minutes to get used to the system.
Based on the initial feedback, the yaw angle is adjusted
(from 45 to 90 degrees) according to the participant’s pref-
erence on an amplitude of movements and precision of
column selection; additionally, the window overlap is tuned
(from 50% up to 90%) if the selection of a character after
performing a disambiguation gesture was too fast from the
participant’s point of view.

When a participant reports that they are used to the
input protocol, the first text input session starts. Similarly
to [75], within each session 5 random target 5-letter words
from Mackenzie’s phrase set are presented in the input
field consecutively [14]. The time required to input a single
word is calculated as a difference between the input of
the first and the last character. After each session, a short
summary of achieved wpm and error rate is presented to
the experiment conductor (not to the participant to avoid
bias in the further NASA Task Load Index questionnaire).
Initially, we run 5 sessions. If the observed wpm during
the first 5 sessions kept growing, we run an additional 6th
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Fig. 5: Accuracy for static gesture recognition given the
window size (in samples).

TABLE 4: Confusion matrices for offline gesture recognition,
window size = 50 samples

Freehand (96.6%) Tripod (95.9%) Cylindrical (95.8%)
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s t m b r s t m b r s t m b r

Legend
[95%, 100%] [90%, 95%) (3%, 7%] [1%, 3%] (0%, 1%)

session to determine the knee point in the learning curve. In
other words, we use the 6th session as an indicator that the
peak performance was reached within 5 sessions.

4.2 Offline gesture recognition
Here, we present the static recognition accuracy of the
developed CNN classifier. We use 5-fold cross-validation to
analyse model’s performance given different lengths of time
window for (a) overall performance and performance on (b)
freehand, (b) tripod grasp, and (d) cylindrical grasp gesture
sets separately. Based on the results presented in Figure 5, it
is clear that the smaller the time window we employ, the less
accurate the recognition is. We also show confusion matrices
for offline gesture classification in Figure 4.

4.3 Text Entry Rate
Figure 6a shows the word-level text entry rate with MyoKey
for freehand, tripod and cylindrical grasp scenarios. The
standard deviation is represented by error bars. Two-way
Repeated Measures (RM)-ANOVA demonstrates a signifi-
cant effect of the conditions (F2,165 = 4.128, p = 0.0178) but
an absence of statistical significance in the Session (F4,165

= 1.301, p = 0.2717), which indicates no obvious learning
effect on the conditions throughout the five sessions. The
participants in the freehand scenario achieved overall mean
text entry rate of 9.33 WPM (σF = 1.73), which is 6.57% and
11.78% faster than the sessions of holding a pen (M̄P =8.76
WPM, σP = 1.94) and in cylindrical grasp scenarios (M̄U=
8.35 WPM, σU = 1.87). We observe slight improvements
in the text entry rates in all the scenarios between the
1st and 4th sessions, as follows. In the 1st session, the
participants with freehand, tripod and cylindrical grasps
result in 8.54 WPM (σf,1 = 1.63), 8.56 WPM (σp,1 = 2.19)
and 8.00 WPM (σu,1 = 1.66), respectively. During the 4th
session, all scenarios coincidentally reach the peak perfor-
mances: freehand (M̄f,4=9.86 WPM, σf,4 = 1.68), tripod
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(a) WPM using suggestions.

(b) WPM without suggestions.

Fig. 6: Text entry rate of MyoKey in three setups.

grasp (M̄p,4=9.11 WPM, σp,4 = 2.28), and cylindrical grasp
(M̄u,4= 8.69 WPM, σu,4 = 2.37). However, we recorded
consistently lower performances in the fifth session among
all conditions, as the participants reported the tiredness
of arms after four consecutive sessions (breaks included).
Figure 6b reports the character-level text entry rate in the
three scenarios. Throughout the five sessions, the partici-
pants maintain consistent throughput in three conditions,
where the average text entry rates for freehand, tripod, and
cylindrical grasp are 4.11 WPM (σF = 1.72), 4.05 WPM (σP
= 1.68), 4.22 WPM (σU = 1.73). We also recorded the actual
number of characters being typed before the participants
had chosen the suggestion words by performing the Sug-
gestion gesture (Table 1). All scenarios of freehand, tripod,
and cylindrical grasps consistently demonstrate an average
character number of 2.85 (σ = 0.15), 2.97 (σ = 0.16), and 2.92
(σ = 0.04), respectively.

Instead of typing the word phrases character by charac-
ter, the participants usually type no more than three charac-
ters and seek the desired suggested word. This indicates that
the participants rely on the suggested word list to accom-
plish the word phrases quickly. Also, we notice that an ob-
vious performance gap between word-level and character-
level text entry rates. With the optimized dictionary model
(Section 3.4), the text entry rates in all three conditions
increase by 227% (freehand), 216% (tripod grasp) and 198%
(cylindrical grasp). The drastic speed improvements imply
that the dictionary model proposed in MyoKey is a necessity
for sEMG-based text inputs to reach usable text entry rates.
As shown in Figure 6 input rate with suggestions reaches
its maximum at sessions 3 and 4. After that, because of
accumulated fatigue (reported as physical load in NASA
TLX, see Section 4.7), the input rate decreases on average at
session 5.

(a) Raw character input, ac-
curacy = 0.666.

(b) Character accuracy after
suggestions = 0.851.

Fig. 7: Confusion matrices for input characters.

TABLE 5: Observed errors.

Entries 2956 Types of Errors
Errors 985 I 326 (33.0%) II 107 (10.8%)
Rate 33.4% III 159 (16.1%) IV 393 (39.8%)

4.4 Character level error rate

Before we present the word-level error rate in Section 4.5, we
depict the root causes of erroneous inputs by examining the
character-level errors and their types. It is important to note
that the overall error rate of 33.4% (Table 5) is significantly
alleviated by our voting system and corresponding opti-
mization, resulting in the aforementioned stated entry rate
(Section 4.3) at a usable level of input accuracy (Section 4.5).
Also, it is worth pinpointing that text input with alterna-
tive input modals, i.e., wearable input techniques but not
touchscreen-based inputs, are evaluated by word phrases.
Meanwhile, the effectiveness of such input techniques is
primarily judged by word-level performance [42], [76], [77].
The section explains the root causes for the sake of the
transparency of our results. Figure 7 shows the confusion
matrices between the intended character and produced
character for (a) raw character input and (b) after the word
suggestion is applied. Accordingly, we identify four types
of character-level errors within our system:

Type I: A user selects the right column (i.e. the forearm
locates at the target column), yet performs unrecognized
gesture (due to limited familiarity with the system’s proto-
col) or the classifier misclassifies the gesture – wrong gesture
within the right column. Such an error can be observed in
clear line-shaped misclassification pattern in {e, d ,c} column
as it is shown in Figure 6a. Another example of that type
of error is the confusion of characters that are located in
the two leftmost columns (’a’, ’z’, ’s’, ’x’). When a user
performs gestures to input those characters, they need to
position their forearm closer to the chest, which causes the
forearm muscles to contract more. Thus, the recorded sEMG
signal is intensified and becomes less distinguishable to the
developed classifier. Although the participants were asked
to move their arm while collecting the training dataset as
described in §4.1, the sEMG signals in that particular case
still may not be captured properly for the training phase.

Type II: A user mistakenly chooses a character in an
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adjacent column by initially selecting neighboring column
or accidentally shifting column selection while performing
a gesture for character disambiguation: wrong, yet adjacent
column, right gesture e.g. characters ’j’ and ’h’.

Type III: A user performs right gesture to input a desired
character, but starts too early, in advance, before changing
the column: wrong, and distant column, right gesture e.g.
characters ’h’ and ’a’.

Type IV: Wrong inputs performed in random columns
while occasionally pausing to look for a target character. It
can be a case when a user inputs a wrong character in a
previously selected column and then moves on to the next
target character. This type of errors can be easily observed in
underrepresented characters, like ’z’: ”pizza” is being input
as ”pikza” due to phantom input of ’k’ as it is in the same
column with the previous character ’i’.

We present numbers for each type of the identified
errors in Table 5. Individual physiological traits and the
uniqueness of the bio-signal in each participant combined
with the non-linearity of the deep learning model (and
subsequent non-linearity of classification errors) lead to the
observed complexity of the text error rate distribution. We
calculate character accuracy presented in the confusion ma-
trix based on raw input and target characters. Nevertheless,
we only consider character-level predictions as a reference
performance. That is, once the very first part of an intended
word is incorrectly entered, our model of word suggestion
corrects the word.

4.5 Word-level Error Rate

Figure 8 shows the error rate of the three MyoKey usage
scenarios, and the error bars representing the standard
deviation. Throughout the five sessions, the mean error rates
of the three conditions (Freehand, Tripod and Cylindrical
grasps) are 6.88% (σF = 0.092), 7.54% (σP = 0.096) and
9.81% (σU = 0.121) respectively. We ran a two-way RM-
ANOVA indicating that Freehand, Tripod and Cylindrical
grasps do not result in being statistically different in terms
of the error rate (F2,165 = 1.281, p = 0.2804) and the learning
effect among sessions (F4,165 = 0.871, p = 0.482). However,
we spot reduced error rate between the initial and the peak
performance. Initially, the scenarios of Freehand, Tripod
and Cylindrical grasps generate error rates of 9.67% (σf,1
= 0.104), 8.67% (σp,1 = 0.137) and 9.71% (σu,1 = 0.133), while
their error rate reached the minimum values in either the
4th and 5th sessions – Freehand (M̄f,5= 3.67%, σf,5 = 0.077),
Tripod grasp(M̄p,4= 5.00%, σp,4 = 0.093), and Cylindrical
grasp(M̄u,4= 7.71%, σu,4 = 0.099).

4.6 Recalibration Performance

Additional Data Collection. To experimentally demonstrate
the performance drop of the gesture recognition model on a
new session data and its recovery based on our recalibration
mechanism in our system, we first collected additional
user data. Then, we asked the six participants among the
12 participants to perform another recording session. We
performed the new recording session (at least) 12 after
the initial data recording date, allowing us to investigate
the effectiveness of our recalibration mechanism on user

Fig. 8: Error Rate

Fig. 9: Gesture recognition performance after applying the
recalibration mechanism with different amounts of addi-
tional sEMG data. Upper bound represents the performance
of a model trained from scratch using the entire new data.

behavior changes over a long period. The data collection
process is the same as described in Sections 4.1 and 4.2.

Results. Figure 9 presents the recognition performance of
MyoKey when [0.5, 1, 2, 4, 8] seconds of each gesture from
a user is added for updating the model. To begin with,
as we mentioned in Section 3.5, we have observed that
the performance of the gesture recognition model decreases
sharply from 96.6%, 95.9%, 95.8% to 67.1%, 51.7%, 60.5%
for all three conditions (Freehand, Tripod, and Cylindrical
grasps) respectively. The results indicate that the more user
data is added to re-train the model, the higher accuracy
can be achieved. In particular, using two seconds of addi-
tional data for each gesture, our recalibration mechanism
demonstrates that it can achieve high accuracy of 79-87.3%.
Furthermore, as shown in Figure 9, after obtaining the four-
second additional sEMG signals for each gesture from user
feedback, the performance converges to 88.5-90.5%, which
is close to the upper bound model that is trained from
scratch using the entire new data. Note that our recalibration
mechanism happens once when a user wears MyoKey again
and starts to use it. This result indicates that our recalibra-
tion mechanism effectively maintains the high accuracy of
the gesture recognition model. Also, since we can obtain
approximately one second of the user’s sEMG signals when
the user clicks on a character and a set of corresponding
labels when the user selects a recommended word, the
performance of MyoKey can be recovered promptly within
a few selections of recommended words.
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Fig. 10: User Workload measured via the NASA Task Load
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4.7 NASA Task Load Index
Figure 10 depicts the user workloads in the three scenarios,
which is quantified on a scale from 1 to 20. For Mental,
Physical, Temporal, Frustration and Effort, the lower the score
the higher the user acceptance; for Performance metric it is
opposite: higher score reflects bigger satisfaction with the
achieved result.

Among the three scenarios, one-way ANOVA shows that
no statistical significance in Mental (F (2, 33) = 0.3155, p =
0.732), Temporal (F (2, 33) = 0.015, p = 0.985), Performance
(F (2, 33) = 2.457, p = 0.101), Effort (F (2, 33) = 1.518,
p = 0.234), and Frustration (F (2, 33) = 1.303, p = 0.285),
except Physical (F (2, 33) = 5.556, p = 0.008), or to put
it simple, the participants did not notice the difference in
the conditions of all three scenarios in terms of the above
metrics, only physical demand was clearly higher for the
Cylidrical grasp (heavier object) scenario. Furthermore, we
ran the Tukey HSD Post-hoc Test for the Physical metric
that demonstrates a significant difference in the group of
Freehand and Cylindrical grasp (p=0.0104), as well as the
group of Tripod and Cylindrical grasp (p=0.0366), but no
difference among Freehand and Tripod grasp (p = 0.8629). In
comparison to performing gestural inputs in the Freehand
scenario (M̄= 6.75), the lightweight pen does not make
a different burden (M̄= 7.58). Therefore, the participants
report that holding the tennis racket (260 grams) for fore-
arm movements in mid-air leads to a significantly higher
workload (M̄= 11.75).

5 DISCUSSION

One of the grand challenges for researchers on HCI and
more specifically on text inputs is to move beyond the
text entry on desktop computers and smartphones and to
start exploring novel and emerging sensory technologies for
alternative contextual uses [32], [78]. When we consider the
text entry problems on the head-worn computers such as
mobile augmented reality headsets, we usually encounter
limited physical form factor [42], and consequently, the
diminishing input interfaces (i.e. the missing of touch-
screens) [14]. Gaze-based interaction requires no hand in the
text entry process but it requires obtrusive and non-mobile
sensors. For instance, EyeSwipe (11.7 WPM) [79] is sup-
ported by the Tobii EyeX eye tracker that violates the form
factor restriction on mobile augmented reality headsets.
Most recent works demonstrate the sEMG sensing capabili-
ties in wearable computers, for instance, gestural controls
(e.g. select and swipe) on Google Glass [80], notification

management [81], enriching the meaning of user touch on
touch-sensitive surfaces on smart tangible objects [82], as
well as recognizing the physical objects on a hand [34].

MyoKey serves as a groundwork leveraging the EMG
sensors for text entry tasks on wearable computers achiev-
ing high usability and user acceptance. The prior works
propose the non-standard keyboards [36] such as LURD-
Writer [61], and users need to learn the new text entry
layouts, in addition to the burden from practicing new
gestures driven by sEMG sensors. Instead, MyoKey lever-
ages the user’s ingrained memory of the standard QWERTY
keyboard layouts [14], in which the familiar layout can
significantly reduce the learning efforts and hence improve
usability [60].

The goal behind the design of MyoKey is to implement
a text entry system on headset computers while holding
objects. In general, MyoKey can serve all headset users with
occupied/busy hands. More specifically, we see that the
most immediate demand for MyoKey belongs to workers in
the industrial sector. For instance, a worker in a factory or a
warehouse is holding a tool, and simultaneously intends to
perform text entry. Another example is that office personnel
may grab a document and at the same time perform text
entry. Although the state-of-the-art two-handed text entry
solutions leveraging within-finger gestures achieve signifi-
cantly higher text entry rates (Mid-air: 12.5 WPM [49] and
Touch-based: 16 WPM [83] – 23.4 WPM [84]) than the one-
handed solutions, we have the concerns about the case
when both hands are occupied in outdoor environments.
To this end, we compare MyoKey with other most relevant
Same and Single-Handed (SSH) text entry systems. SSH
is highly characterized by the one-handed operations with
subtle gestures within the finger space [23]. Additionally, the
latest works on SSH own high mobility, as another empty
hand is reserved for other potential tasks in outdoor envi-
ronments, for instance, holding a handrail [42]. Certain SSH
input systems, leveraging two-handed operations, outper-
form MyoKey in terms of text entry speed. For instance, a
two-handed SSH text entry solution, named DigiTouch [83],
achieves a mean text entry rate of 13.0 WPM. However, Dig-
itouch involves two simultaneous input channels driven by
two thumb operations on their respective finger space. The
two-handed SSH solutions cannot serve as a fair comparison
to MyoKey with only a single finger space, not to mention
the drawbacks of two occupied hands.

FingerT9 [23] is a one-handed glove for text entry tasks.
The user’s thumb performs multi-taps on a touch-sensitive
ambiguous T9 layout located on the index, middle, and
ring fingers (finger space). The thumb-to-finger interaction
with FingerT9 achieves a mean text entry rate of 3.43
WPM. The primary reasons for the low text entry rate are
as follows. First, the users spent three days memorizing
the alphabetical layout on FingerT9. Second, the thumb
movements are less dexterous than other fingers, especially
the index finger [85], and thus the multi-tap operations on
the T9 layout become time-consuming and less efficient.
Another glove-based text entry system [42] addresses the
thumb dexterity issue by substituting the multi-tap input by
force-assisted interaction, which results in a mean text entry
rate of 5.12 WPM. The above two solutions need freeing
up the finger space of the operating hand, while MyoKey
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can accomplish the text entry with a busy hand. We notice
that an SSH solution named RotoSwype [86] achieved 14
WPM after 5-day training. It involves repetitive clicks on a
touch interface on the ring-form addendum, in addition to
frequent wrist rotations that translate to the x-y movement
of a pointer on the swipe-based keyboard of RotoSwype.
However, the gesture design (i.e., rotational movements)
may not be applicable to our scenario of holding an object.
Additionally, a recent work leveraging the sEMG sensors
for one-handed text entry achieves only 2.56 WPM [36] in
mobile scenarios. To the best of our knowledge, MyoKey
(8.35 – 9.33 WPM) uniquely covers both free-hand and busy
hand text entry leveraging the property of SSH text entry
solutions, that is, subtle interactions and reserving at least
one hand for physical tasks.

Moreover, we acknowledge other touch-based interac-
tions designated for one-handed text entry on various
touch-sensitive surfaces such as the spectacle frame of
Google Glass (One-Dimensional Handwriting (4.67 WPM),
SwipeZone [6] (8.73 WPM), a finger-worn addendum (8
WPM) [87], and fingertip addendum (11.9 WPM ) [76]. The
text entry rate of MyoKey is comparable to the above state-
of-the-art solutions but only slightly inferior to the fingertip
addendum, with the below reasons. In MyoKey, subtle
electric currents in each muscle-contraction gesture involve
an unavoidable dwell time of ≈ 300 ms, which is less re-
sponsive than the touch-based interaction [15] on the above
devices. Also, the horizontal arm movements in the MyoKey
layout lead to higher overheads in character selections than
the subtle movements within an area of one fingertip on
the fingertip addendum. MyoKey allows the user not only
to perform freehand operations but also to maintain a firm
grasp on an object. It is worthwhile to mention that MyoKey
and the sets of micro-gestures [31], enable a user’s hand
to hold an object and another hand can be free during the
text entry tasks. For instance, the users holding an umbrella
can complete the text entry task through a series of subtle
arm movements and micro-gestures during bad weather.
Similarly, other everyday objects in a cylindrical shape (e.g.,
handrails in public transport) can be analogized by the
third condition in our evaluation (cylindrical grasp), as long
as secondary modality is different (e.g., gaze tracking). In
contrast, both the operations on the spectacle frame of the
smartglasses and the addendum devices require a lifting
hand on the head position and rigorous finger movements
on the addendum devices.

We have shown the feasibility of deployment on the con-
ventional mobile phone, yet the deployment of our system
on a smaller ubiquitous device, such as Google Glass, might
be challenging since it has limited computing capabilities
given the constraints on computational power, memory,
and energy. It is important to investigate the practicality of
deploying the learned deep CNN model for gesture recog-
nition and our MyoKey system on a standalone XR device
first hand. Yet, there exist various approaches to tackle
this challenge based on previous works. Offloading [20],
when sEMG signal is captured and pre-processed on a
mobile device, but the actual deep learning recognition is
performed on an external computing device, is one of them.
Another one - is the utilization of a Digital Signal Processor
(DSP) on commercial smartphones or wearables that enables

fast and efficient signal processing and consumes an order
of magnitude less energy than an active WiFi chip and
CPU [88], [89].

Grasp micro-gestures can be classified into six types
including Cylindrical (e.g., umbrella), Palmar (e.g., book),
Hook (e.g., Bag), Lateral (e.g., Paper), Tripod (e.g. Pen), and
Spherical (e.g. ball) [31]. Therefore, wider coverage of grasp
micro-gestures to the remaining four grasp types can be
addressed. As a natural continuation of our work, detection
of held objects can be implemented [34] in addition to
the existing functionality. With this capability, MyoKey can
intelligently swap the sets of grasp micro-gestures from one
type to another. Also, the ability to incorporate new user
gestures using continual learning [90], [91] would make
MyoKey provide better system usability.

We acknowledge the limitation of our experimentation
protocol, as participants were required to sit in a chair with
the fixed elbow, thus one of the important future directions
is to evaluate Myokey in walking and running postures. In
addition, external aspects can affect the practicality of our
system, such as muscle fatigue and sweats on the skin of a
user’s arm. Considering these aspects into the system design
can be promising future work.

6 CONCLUSION

In this work, we introduced MyoKey, a text entry system
for extended realities based on myoelectric signals and
inertial measurements. MyoKey leverages from users’ in-
grained memory of the standard QWERTY keyboard. The
deep-learning classifier and error correction techniques let
Myokey achieve high usability and user acceptance. We
have recruited twelve participants to experience MyoKey in
three different scenarios of five or six sessions each. In one
scenario, the hands of the participants were not occupied,
while in the other two they were holding two types of
everyday objects, one small (pen) and a bigger one (tennis
racket in the conducted experiments). We established the
applicability of three different micro-grasping gesture sets
in different contexts to text inputs. MyoKey is evaluated in
terms of words per minute, word error rate, and using the
NASA task load index. Throughout the five sessions of text
entry tasks, MyoKey achieves an averaged text entry rate
of 9.33 words per minute in the scenario of the freehand.
The participants with grasp gestures for a pen reached
an averaged text entry rate of 8.76 words per minute. In
the case of cylindrical grasp, they reached a comparable
averaged text entry rate of 8.35 words per minute.
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