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ABSTRACT

While the global healthcare market of wearable devices has been
growing significantly in recent years and is predicted to reach
$60 billion by 2028, many important healthcare applications such
as seizure monitoring, drowsiness detection, etc. have not been
deployed due to the limited battery lifetime, slow response rate,
and inadequate biosignal quality.

This study proposes PROS, an efficient pattern-driven compres-
sive sensing framework for low-power biopotential-based wear-
ables. PROS eliminates the conventional trade-off between signal
quality, response time, and power consumption by introducing tiny
pattern recognition primitives and a pattern-driven compressive
sensing technique that exploits the sparsity of biosignals. Specif-
ically, we (i) develop tiny machine learning models to eliminate
irrelevant biosignal patterns, (ii) efficiently perform compressive
sampling of relevant biosignals with appropriate sparse wavelet
domains, and (iii) optimize hardware and OS operations to push
processing efficiency. PROS also provides an abstraction layer, so
the application only needs to care about detected relevant biosignal
patterns without knowing the optimizations underneath.

We have implemented and evaluated PROS on two open biosignal
datasets with 120 subjects and six biosignal patterns. The experi-
mental results on unknown subjects of a practical use case such as
epileptic seizure monitoring are very encouraging. PROS can re-
duce the streaming data rate by 24X while maintaining high fidelity
signal. It boosts the power efficiency of the wearable device by
more than 1200% and enables the ability to react to critical events
immediately on the device. The memory and runtime overheads
of PROS are minimal, with a few KBs and 10s of milliseconds for
each biosignal pattern, respectively. PROS is currently adopted in
research projects in multiple universities and hospitals.

CCS CONCEPTS

« Computer systems organization — Embedded systems; «
Human-centered computing — Mobile devices.
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1 INTRODUCTION

The wearable healthcare market has been experiencing significant
growth in recent years, reaching $100 million in 2020 and over $60
billion globally by 2028 [1-3]. It is predicted that healthcare wear-
able devices will be the next generation of personal telemedicine
practice. This is especially important for patients with chronic dis-
eases and after surgery, where constant monitoring is essential to
prevent fatalities [4]. However, many wearable-enabled healthcare
applications have not been deployed due to limited battery lifetime,
slow response rate, and inadequate biosignal quality.

Human biosignals are the key to enabling many healthcare ap-
plications. For example, by using facial muscle signals (i.e., elec-
tromyography (EMG)), one can monitor the stress level [5, 6] and
the eating habit of a user [7-9]. When combining with the brain
(i.e., electroencephalogram (EEG)) and eye (i.e., electrooculogra-
phy (EOG)) signals, one can further supervise the user’s emotional
states [10, 11], their pain and suffering level [12], or detect emer-
gency events such as epileptic seizures [13], microsleep [14], etc.
These healthcare applications often require long-term monitoring
of high-fidelity biosignals and the ability to react to emergency
events to prevent tragedies quickly.
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The trade-off between signal fidelity, response time, and battery
life is a long-standing challenge for wearable devices [15, 16]. In
many healthcare applications, the wearable usually takes the role
of data collecting device due to their limited energy and comput-
ing resources [17]. The collected data are transmitted to nearby
mobile devices through wireless communications (e.g., Bluetooth,
WiFi) to predict emergency events or upload to users’ healthcare
providers for further diagnosis. Though maintaining the collected
signal fidelity is crucial [18], continuous wireless communication
has a high cost on the battery life [19]. E.g., Bluetooth could con-
sume up to several mWs [20], while WiFi could go as high as 10s of
mW [21], depending on the data rate. As a result, many healthcare
wearables have to reduce signal quality (i.e., by lowering data rate)
and increase response latency (i.e., by increasing communication
intervals) to improve battery lifetime [19].

In this project, we explore the challenges of building a new event-
driven compressive sensing framework, called PROS, that could
enable highly energy-efficient wearables for biopotential-based
applications. We develop PROS based on the sparsity nature of
biosignals and events. Specifically, PROS consists of tiny pattern
recognition primitives and a pattern-driven compressive sensing al-
gorithm that work together to significantly reduce transmission rate
while maintaining high fidelity signal (Fig. 1). PROS also enables
the ability to react to critical events immediately on the device.

Challenges: To realize PROS, we face the following challenges:
(1) biosignal events (e.g., seizures, microsleep, pain, etc.) require
multimodal sensing channels and a complex algorithm (e.g., ma-
chine learning) to detect, which is not feasible on low computing
resource wearable; (2) we lack a reliable domain with high sparsity
to compress biosignals on the device effectively; (3) low power
wearable devices have extremely constrained computing resource,
i.e., an MHz microcontroller (MCU) and KBs of system memory,
making it challenging to deploy advanced computations without
consuming significant energy.

Contributions: To overcome the aforementioned challenges,
we make the following contributions:

(1) We identify the pattern primitives of biosignals such as EEG,
EOG, and EMG and develop tiny recognition models (TinyPR)
for continuous on-chip detection and low-latency responses.

(2) We devise a pattern-driven compressive sensing (PDCS) tech-
nique to efficiently compress the captured signal pattern with
appropriate wavelet domains, boosting the compression factor
and recovered signal quality.

(3) We design a hardware platform and employ optimization tech-
niques in both hardware and OS levels to support advanced
signal processing and neural network operations of PROS.

(4) The prototype of PROS is evaluated on two open datasets of
120 subjects. In a practical use case such as epileptic seizure
detection, PROS can reduce the data rate by 24X, boost the
power efficiency by more than 1200%, and enable real-time
responses within 10s of milliseconds while maintaining high
fidelity signals.

Potential Applications and Impact: While we currently focus
on EEG, EOG, and EMG biosignals and a head-worn form factor
in this study, PROS is also applicable for a variety of healthcare
wearable devices such as smartwatches, earphones, smart clothes,
etc., where achieving high-fidelity biosignal streams, low-latency
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responses, and long battery life is critical to their applications. To
encourage adoption and reproducibility, PROS is available as an
open-source project [22] under the LGPLv2 license.

2 OBSERVATIONS

As biosignal events are often intermittent, monitoring them contin-
uously results in wasted energy, computing power, and memory. In
this project, we consider events that are associated with EEG, EOG,
and EMG, but the proposed solution would be generally applicable
to other biosignals in multiple application domains.

Event Sparsity. We observe that the events of interest (e.g.,
seizures, microsleeps, etc.) are important but rarely happen. Several
studies have reported that these events only occur less than 5%
of the signal duration [23]. Thus, detecting these events on the
device could help to cut a significant amount of energy needed to
stream the signals out. However, detecting these events requires
multiple signal modalities (i.e., EEG, EOG, EMG, etc.) and a com-
plex algorithm, making it challenging to implement on resource-
constrained devices. Our intuition is that we could decompose
these complex events into smaller and generic patterns of interest
(Pols). For example, an epileptic seizure waveform could consist of
EEG spike/polyspike and slow-wave (focal/generalized non-specific
seizures), 3-Hz spike-and-wave discharges (absence seizures), and
stiffing and convulsion patterns (tonic-clonic seizures). Similarly,
we can decompose a microsleep event into alpha, theta wave, slow
eye movements, and muscle contractions patterns on the EEG, EOG,
and EMG signals. Thus, it is feasible to detect these patterns directly
on the device with an efficient pattern recognition technique.

Signal Sparsity. We also observe that the sparsity property
also presents at the signal level. While biosignals are known to be
non-sparse in time or frequency domains, they could have sparse
representations in other domains (e.g., wavelets). Thus, we do not
need all the collected samples to reconstruct the signal. The com-
pressive sensing (CS) theory has been developed to exploit the
signal sparsity. It states that the number of signal measurements de-
pends on inherent information contained in the signal and is much
lower than the Nyquist rate [19]. The effectiveness of CS relies
directly on finding a reliable domain with high sparsity. However,
this is still an open challenge for non-stationary biosignals [24].

From these observations, we hypothesize that by exploiting
both event and signal sparsity, the amount of data reduction
could be significant, leading to a highly energy-efficient system.
However, we must take great care in designing such a system.
With the constrained computing resources of wearable devices, any
additional energy spent on complicated algorithms could easily
outweigh any benefits from the reduced wireless transmission.

The remaining questions are (1) How can we develop the pattern
detection models so that they can be both accurate and efficient (Sec.
4)? (2) How can we devise a compressive sensing method that could
achieve low sampling rate while maintaining high signal fidelity (Sec.
5)? and (3) How can we optimize the system to ensure the efficiency
of additional computation (Sec. 6)?

3 PROS SYSTEM OVERVIEW

We design PROS with three objectives, (1) detect signal patterns
of interest (Pols) directly on-chip to eliminate most of the irrele-
vant signal, (2) compress the detected Pol by using the recognition
information to reduce wireless transmission rate further, and (3)
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Figure 2: PROS system overview.

optimize hardware and OS operations to enhance system’s effi-
ciency. To achieve these goals, we develop three main components
for PROS as illustrated in Fig. 2, (a) a firmware framework that
detects and compress the Pols by using our developed tiny embed-
ded machine learning models and a pattern-driven compressive
sensing algorithm, (b) a low-power hardware platform that acceler-
ates advanced signal processing and embedded machine learning
operations, and (c) a mobile app to recover the compressed Pols for
further processing.

E [ciemt Features Extraction Pipeline. We design a feature
extraction pipeline based on the characteristics of biosignals to
compute Mel-frequency cepstral coefficients (MFCCs) from the
signals. As the computing resource is highly constrained, we tune
the MFCC processing so that the output contains enough vital
information of each pattern while being small and lightweight.
Additionally, we employ accelerated signal processing methods
available on the hardware to boost the processing speed.

Tiny Pa [erh Recognition Primitives. We develop tiny pattern
recognition (TinyPR) primitives to effectively detect patterns of
interest (Pols) from the captured biosignal streams. Each primitive
only detects one Pol to ensure its efficiency and flexibility in dif-
ferent applications. Each primitive only needs a few KBs memory
and milliseconds of CPU time to operate. We use TensorFlow Lite
Microcontroller (TFLM) runtime and vectorized neural operations
to push the inference performance.

Pa Cerh-Driven Compressive Sensing. To further reduce the
amount of communication, we devise a novel compressive sensing
technique to exploit the sparsity property of each Pol. We adaptively
apply the optimal compression ratio and wavelet domain transfor-
mation based on the pattern recognition information. We use a
random binary compression technique to compress the signal with
minimal system overhead on the wearable device. To reconstruct
the signal, we employ a state-of-the-art Block Sparse Bayesian
Learning recovery algorithm combined with pattern recognition
information to reduce the required compressed samples by taking
advantage of the sparsity of biosignal. As a result, we could achieve
a high compression factor and reconstruct the signal with high
fidelity on the mobile application.

Hardware and OS Optimizations. To further enhance the pro-
cessing efficiency, we implement hardware and OS optimizations
such as (i) dynamic voltage and frequency scaling, (ii) dynamic tick-
less mode, and (iii) adaptive energy thresholding. We also develop a
scheduler that provides configurations and wakes the application’s
threads when subscribed Pols are detected.

PROS Hardware and Mobile Application. We design a low-
power hardware platform from the ground up to support PROS.
To enable advanced optimizations on the firmware, we equip it

with a energy-efficient signal processing and neural network pro-
cessor and an adaptive, high-efficiency CPU core supply. We also
developed a lightweight signal reconstruction algorithm on mobile
devices to reconstruct the compressed Pol with high fidelity. The
reconstructed Pol could be used for further processing or diagnosis.

4 TINY PATTERN RECOGNITION
PRIMITIVES

This section presents our end-to-end pipeline, called TinyPR, for rec-
ognizing biosignal patterns. The key contributions of TinyPR are (1)
identifying the generic biosignal pattern primitives that are feasible
to be efficiently recognized on the low-power hardware and (2) pro-
viding a design strategy that can be both accurate and lightweight
for those pattern primitives. The developed pattern recognition
models can be served as building blocks for biopotential-based ap-
plications requiring on-chip pattern recognition. We first highlight
key challenges and insights into the design of our framework.

4.1 Key challenges and designs

As per our system requirements, the target recognition model
should be highly expressive to detect the biosignal patterns but
also resource-efficient for the MCUs’ deployment. This expressive-
efficiency trade-off poses a critical challenge for our system design.

Detecting biosignal patterns has remained challenging, despite
some positive outcomes in preliminary works [25, 26]. Biosignals
are highly irregular and heterogeneous [27] due to the complexity
and intrinsic properties of biosystems, causing the difficulty for
understanding and detecting the interest patterns [25, 28]. For in-
stance, recent works [26, 28] find that most existing approaches
are ineffective for learning patterns for clinical analysis and event
detection. Besides, the scarcity of interest patterns [29, 30] in biosig-
nals makes the learning even harder: the training data is heavily
imbalanced. The resource restriction of MCUs adds another chal-
lenge to our design. With limited computing resources in terms of
memory, operations, and computation capacity, MCUs require the
inference system to have low memory footprints (e.g., a few KBs)
and low inference latency.

Existing methods to biosignal learning are mainly based on either
the deep learning approach or feature-based machine learning ap-
proach [26, 31]. While achieving high recognition performance and
being easier to implement on hardware, deep learning models are
usually too large for MCUs. On the other hand, simple feature-based
learning models are more resource-efficient but not sufficiently and
robustly effective at detecting complex patterns [26]. In this work,
we propose the combination of the feature-based approach with
deep learning: utilizing an informative feature extractor to reduce
the burden in learning domain knowledge features. Moreover, we
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can significantly reduce models’ sizes by leveraging quantization
techniques without degrading the recognition performance [32].
Subjects variation is also a challenge for biopotential-based sys-
tems. While biopotential signals vary among people, our intuition is
that they contain similar patterns due to the typical structure of the
human body. For example, eye blink signals usually have two op-
posite consecutive peaks corresponding to the closing and opening
phases of the eyelids; alpha brainwaves typically have cyclical or
rhythmic changes with a frequency from 8 to 12Hz when the brain
neurons become synchronized in a relaxed state. Therefore, our
intuition is that if we train the TinyPR models to target common
and generic signal patterns of interest, these models could general-
ize well to unseen subjects. We present the detection performance
evaluations of our developed TinyPR models in detail in Sec. 8.

4.2 Pattern Recognition as the Rare Event
Detection Problem

Most target patterns rarely occur in biosignals. For instance, seizure
events usually account for only 1% in EEG recording data [29]. This
results in the highly skewed distribution of training data. Standard
methods for event detection and feature selection may not work
well with the imbalanced data [33] because they tend to learn
features only from the major classes (background signals) and may
easily misclassify the minor classes (target patterns).

Therefore, we cast our pattern identification problem as the rare
event detection problem [34]. Solving this problem requires adopt-
ing either supervised or unsupervised techniques for rare-event
detection [33]. The latter requires large models with an enormous
amount of unlabeled data, which are not feasible for deploying
MCUs. Hence, we focus on the supervision approach to design a
more lightweight classification model. In particular, considering
target patterns as positive and the rest patterns as negative, the
problem becomes a binary classification task. We note that data
distribution is highly skewed as positive data is much smaller than
negative data. To deal with this issue, we apply SMOTE [35] method
to upsample the positive patterns. The next section will present the
design of our feature extractor and binary classification model.

4.3 Informative Feature Extraction

Powerful prior knowledge via informative feature extraction can
significantly reduce the complexity of recognition models. Mel
Frequency Cepstral Coefficients (MFCC), together with Wavelets
transform, are the two most common approaches used for extracting
biosignal features [36]. Since the computing resource and energy
on low-power microcontrollers (MCU) are highly constrained, we
only pick the features that are informative while being resource-
efficient. MFCC features fit well with these criteria as multiple
previous works [36, 37] have proved that MFCC features are reli-
able in detecting biosignal (EEG/EOG/EMG) events. Furthermore,
there are available components in the optimized firmware library,
such as ARM-CMSIS, for an efficient implementation. An efficient
implementation is critical for low-power MCUs since heavy pro-
cessing can easily outweigh any benefits of data reduction.

As MFCC is initially used for audio signals, we configure its
components to extract useful features from biosignal data. We note
that most of the information in biosignals (EEG, EOG, EMG) locate
at the low-frequency bands ( 300Hz) [38, 39]. We, therefore, use
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only ten bands among 39 features of MFCC to extract essential
features, further helping reduce the input size of the recognition
model. We use Hamming window to slice the signals into slicing
frames. Note that sudden chop-off at the frame’s edge can lead
to a noisy signal because of the sudden amplitude drop. Hence,
we gradually drop amplitude near the edge of frames. We apply
Discrete Cosine Transform to extract features in the frequency
domain and triangular Mel-scale filter banks to transform the signal
to Mel-scale power spectrum. Given these features, we can now
build an efficient classifier.

Though it is possible to extract meaningful features with au-
toencoders automatically, it is not efficient on low-power micro-
controllers. It has been pointed out in [40] that directly extracting
features would be much more energy and computational efficient
by taking advantage of the accelerated library of the targeted hard-
ware. Thus, we design our TinyPR models around optimized signal
processing and neural operations provided by TinyML frameworks
such as TensorFlow Lite Microcontroller [40] and CMSIS-NN [41].

It is also important to note that while MFCC could extract tempo-
ral and spectral features well, these features might not be sufficient
for all applications. Thus, we envision that PROS serves as an open
framework where multiple processing pipelines and pattern recog-
nition models could be developed for various applications.

4.4 Efficient Design for Recognition Model

We build a deep classification model on top of the extracted MFCC
features to complete the recognition framework. The resource con-
straints pose two questions for our design: how to design the best-fit
model given particular conditions on memory and power and how
to efficiently run the model on MCUs. We wish to achieve these
objectives without degrading the recognition performance.

E LCciemt Architecture. Recent works of TinyML [42], or ma-
chine learning for edge devices, provide potential solutions to our
problem. TinyML aims to shrink sizeable deep learning models
(millions to billions of parameters) into tiny models of a few KBs,
mainly by changing the network topology to remove the redun-
dant parameters [43, 44], reducing the input size, or loading only
parts of the network to the memory to address the memory bottle-
neck [45, 46]. However, existing models are not directly applicable
for our PROS system because the shrunk models’ sizes are still
relatively larger than our desiderata, and the designs are primarily
specific for image signals instead of biosignals. Therefore, we de-
rive a simple yet powerful architecture for our system based on the
recent advances of TinyML [42].

The critical component of our architecture is the block of depth-
wise convolution (DW-Conv) and pointwise convolution (PW-
Conv) [43], which has been proven helpful in multiple resource-
aware models, such as MobileNets [43, 44] and MicroNets [47].
DW-Conv is a type of spatial convolution that applies indepen-
dently on each channel of inputs. PW-Conv usesa 1 1 kernel to
iterate every point, further linearly combining DW-Conv outputs.
Compared to the standard convolution, DW-Conv and PW-Conv
require much smaller numbers of parameters, thus being more com-
putationally effective [48]. Also, these operations are supported by
the micro deep learning framework TFLMicro [49].

Our architecture consists of a convolutional layer as the input
layer, followed by a sequence of DW-PW-Conv blocks, a Dropout
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Figure 3: Pattern-driven Compressing Sensing framework.

layer, and a linear layer. Each DW-PW-Conv block is a stack of a
DW-Conv and a PW-Conv with batch normalization and a Relu
activation. Under di erent systems, we control models' sizes by
varying the number of DW-PW-Conv blocks and channels' sizes
to tthe MCUSs' requirements. In particular, we apply the search
approach in MobileNetV244] to search for the architecture's con-
gurations achieving the best trade-o of e ciency and recognition
accuracy. For the deployment on MCUs, we use the TensorFlow
Lite Microcontroller framework pQ to compress the model into
the numeric domain, reducing the memory footprint and speeding
up the computation.

Post-training Dynamic Range Quantization. To further re-
duce the model's size for inference, we apply the dynamic range
quantization technique $1]. While the oating-point format is
used for parameters of most deep learning models to achieve better
precision during training, it may be costly to store oating-point
numbers, especially on low-memory edge devices. Quantization
techniques help solve this issue by converting trained parameters
into another number representation. For instance, converting the
commonly used oat32 format to the int8 format helps save 24 bits.
Weights are converted back into 0at32 format during the inference
for better classi cation performance. We nd that the recognition
performances in metric-wise are nearly identical to the original
ones after this transformation.

Memory complexity. Our nal models have only a few KBs in
size, highly optimized compared to MobileNetV1 and MobileNetV2
(16.9 MBs and 4 MBs, respectively). We attribute this tremendous
compression mainly to the use of an informative MFCC feature set:
with small size (10 features (Section 4.3)) and with low dimension
(22 dimensions). The input size of classi cation models reduces from
224 224 3(forimages in MobileNets) down td0 22 leading
to small numbers of convolution channels and layers required to
learn the feature representation. As a result, our smallest models
have only nearly 3.5K parameters in total.

Inference with Con dence. Together with producing accurate
predictions, an essential requirement for recognition models in
practice is to provide the con dence of the prediction. Inspired
by the clinical procedure in diagnostics, we impose the con dence
level to the pattern recognition result. Together with each classi ca-
tion's output (binary value), our model produces a con dence score
representing the certainty of the prediction. This score is gener-
ated by thresholding the soft-max scores of the binary classes. The
application can choose the threshold to make a trade-o between
sensitivity or speci city depending on its requirements.

At this stage, we could eliminate most of the irrelevant signals.
However, as we still need to transmit the captured Pol signals, we
need to compress the data to reduce the transmission rate further.

5 PATTERN-DRIVEN COMPRESSIVE
SENSING

This section discusses the challenges and our proposed Pattern-
driven Compressing Sensing (PDCS) technique to reduce the
amount of wireless communication in our system. While downsam-
pling is a popular technique to reduce data rate, it has been shown
that it could signi cantly degrade the quality of biosignal analysis
and induce higher noise and aliasingZ. In this study, we employ

the compressive sensing (CS) theory as it could avoid signal degra-
dation while requiring minimal system processing and memory
overheads, both of which are critical for low-power biopotential-
based wearable$p. It bases on a fundamental assumption that
biosignals have sparse representations in a transformed domain
such as frequency or time-frequency (e.g., wavelefs) 5. Thus,
sampling the signal based on the fastest frequency component based
on Nyquist Shannon theory is redundant [56].

The key contribution of PDCS is the ability to incorporate pat-
tern recognition information to build an e cient data-driven com-
pressive sensing method. Conventionally, the compressive sensing
techniques are deployed on low-power devices due to the sim-
plicity of the compression. The performance, however, depends
heavily on the choice of the compression ratio and sparse domain
basis. Since pattern recognition information was unavailable in
previous works [L9, 57 due to energy and computational resource
constraints, the compression ratio and sparse domain basis are of-
ten chosen and tuned o ine based on pre-collected data and apply
to the whole signal during runtime. It leads to signi cant variations
and inconsistent performance with non-stationary biosignals such
as EEG 24. By enabling energy-e cient on-chip pattern recogni-
tion, we can recognize and apply di erent compression ratios and
sparse domain basis for each signal pattern in real-time.

Itis also important to note that the merit of PDCS is complemen-
tary to TinyPRs. For example, assuming TinyPRs could reduce the
transmission rate by M times by eliminating the irrelevant signal
and PDCS compress the detected signal by N times on average, we
will have the total compression ratio df  # . Furthermore, the
theoretical computational (and energy) cost of PDCS is much lower
than running a TinyPR model on the wearable device, i.e., only one
matrix-vector multiplication versus a convolutional neural network
inference, making the return on investment of PDCS signi cant.

5.1 PDCS framework design

We design our PDCS framework as illustrated in Fig. 3. PDCS is a
digital CS design where we perform compression after digitalization.
This design has the advantage that we could use precision, high-rate
ADC (e.g., modulated ADCs%8) to avoid high-frequency
noise and aliasing. PDCS has four important steps as follows.
First, we identify the domain and the transformation basis.=
where the input signat =1 has a sparse representatid, i.e.,
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Figure 4: Sparsity variations among patterns in a wavelet (db2) domain.

B As sampling with CS is based on the inherent infor-
mation contained in the signal rather than its frequency band-
width, the higher sparsity of the representatioB the less in-

formation is presented in the signal. Hence, a lower number of

(EEG), (3) absence seizure (EEG), (4) chewing (EMG), (5) tonic-clonic
seizure (EEG), and (6) muscle contraction (EMG). We apply the same
discrete wavelet decomposition with seven levels. By keeping the
recovery similarity index, i.e., SSIM, to be at least 0.9 between the

measurements is needed. The sparsity and density are de ned as original and recovered, we can nd the minimum number of wavelet

the percentage of zero and non-zeroes valueginespectively.
(?0AB8G~1 4=B8C~

Second, we choose an i.i.d random distribution to construct our
measurement matrices. We construct multiple s for various

coe cients that are needed to reconstruct the original signal.

The 312 mother wavelet has a high structural correlation with
eye blinks patterns. Thus, fewer wavelet coe cients are needed to
reconstruct the original signal with only 4% density. On the other

compression factors (CFs). To ensure the compressed signal can behand, the db2 wavelet works poorly with chewing, tonic-clonic

sucBessfuIIy recoverable, the coherencelietween and ,j.e.,
T=T= lrgag_jh g dj, isemployed$g. Lower” (1Y Y " 3),

means more e cient compression. Random measurement matri-
ces such as Gaussian, Bernoulli, Binary, etc. have 'lavith any
basis [59, 60]. Thus, they are employed as the universal encoders.
Third, on the wearable device, we compress the captured biosig-
nals ¢ <. 1) based on pattern recognition information from TinyPR
primitives (Sec. 4) and desired CFs (= =+<) for each pattern?),
i.€.,. <1 = z.= - =«, With < and= are the sizes of the compressed
(- ) and the original signal-(), respectively< should be much
smaller than= for the compression to be e ective. We transmit
together with its recognition information to help with the recovery.
Fourth, at the receiver side (e.g., tablets, phones), we nd a sparse
representatiorB.; by minimizing a Bayesian loss function. Using
the received pattern recognition information, we dynamically ap-
ply di erent basis functions ( ?B to the Block Sparse Bayesian
Learning (BSBL) algorithm to get the optimal results. The original
signal is recovered by' = 7R

seizure, and muscle contraction patterns. Their density is 36, 22, and
15%, respectively. Up to 9X can be observed in the density di erence
among these biosignals; hence, nding the optimal wavelet domain
is a signi cant challenge that we need to address.

5.3 Optimal wavelet domains search

In this study, we assume that a universal wavelet domain for all
the biosignal or even each signal group such as EEG, EOG, or
EMG might not exist. However, there exisé optimal wavelet
domain for individual biosignal pattern . Thus, by knowing the
pattern of the interested signal, we could choose the appropriate
sparse wavelet domain for each pattern to get the best compression
factor. This is not possible in conventional CS syster®4 b7, 63

67 where we lack the pattern recognition ability from biosignal
streams. Hence, we have to trade-o between signal delity (i.e., by
using the smallest CF) or compression factor (i.e., by accepting the
loss with low sparsity patterns). Sec. 4 discuss how we overcome
this challenge by capturing pattern information directly on the
low-power hardware. The next step is to nd the optimal wavelet

We tune CF based on the acceptance loss of the recovered signal.domain for each biosignal pattern of interest.

The con gurations are evaluated on sample datasets to ensure
satisfying accuracy. We measure the loss of the CS method by using
the Structural SIMilarity index (SSIMBfl]. We employ SSIM in this
study since it has better performance on structured sign@§.
The higher SSIM is better. SSIM = 1 means perfect recovery.

5.2 Sparsity variations among patterns

Finding the optimal domain where biosignals have sparse repre-
sentations is the most crucial task and the most non-trivial one.

There are several quantitative metrics in literature to choose the
optimal wavelet domain such as maximum cross correlati6f|
mean squared errord9, continuous wavelet coe cients [J, min-
imum description length 71], etc., that are used for biosignals such
as EEG, EOG, EMG, or ECG. They are based on the intuition that the
optimal wavelet domain will have the highest similarity between
its transformation basis and the input signal 8. They, however,
could not tell us the sparsity of a signal pattern, making it di cult
to estimate the compression factors. Furthermore, some studies also

Previous works on compressive sensing with biosignals show the point out that similarity-based methods might not always result in
feasibility of biosignals such as EEG, EOG, EMG to have sparse optimal wavelet domainsq2. To alleviate this issue, we propose
representations in time-frequency domains such as Gabor, Spline, another selection metric called Maximum Sparsity Index (MSI).
and Wavelets domain2f, 62 64. However, as they do not take We de ne MSI as the maximum percentage of discrete wavelet
into account individual signal pattern structure, many studies have coe cients that are not signi cant to reconstruct the signal.
reported large variations to the reconstruction accuracy among Listing 1 presents our search algorithm. Since there could be
di erent channels and trials [24, 65]. an in nite number of wavelet domainsT3, we only pick out 70
Fig. 4 con rms the signi cant sparsity variations among dif- mother wavelet functions in six families such as Daubechies (db1-
ferent biosignal patterns in the same Daubechie822j wavelet 15), Coi et (coif1-5), Fejér-Korovkin (fk4-fk22), Symlet (sym2-15),
domain. Six biosignal patterns are extracted from an open biosignal Biorthogonal Spline (bior1.1-6.8), Reverse B-Spline (rbiorl.1-6.8),
dataset §6. They include (1) eye blink (EOG), (2) spike-and-wave that are commonly used for biosignalg4 76. For each mother
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wavelet function, we apply Discrete Wavelet Transform (DWT)
to the input signal { ) with ve decomposition levels to get its
wavelet coe cients 2>45 5.B'he number of decomposition levels
is chosen to extract all the frequency information inside the input
biosignals 7. As2>45 5i8near sparse (i.e., the coe cients that
are signi cantly larger than zero are sparse), we iteratively apply
di erent thresholds to get a sparse representatids.(

Algorithm 1: Optimal wavelet domains search

input : BB8<C A/*Minimum desired recovery quality*/
FOE4;4CB8BCWavelet domains search space*/

output: 14BC /*a wavelet domain with the highest( */

14BG #>=4;

14BC'( 0;

for, in FOE4;4CB8B@o

"(B #>=4

for - in B86=0;;8Bdo

2>455B ,) 1. ©

for C Ain C A4B >;3BA0=64do

B CA4B>;38=8>455B<C A

N ) 1P

if (" i-e-"° BB8<C Athen

L "( |4A>BBP; 4=1P
break

| "(B"0?724=31"( ©°

if 14BC'( Y OE6"( B °then
14BC( 0E6"( B ©
14BC

réurn 14BG ;

We then quantify the quality of the reconstructed signa) from
Bby applying Inverse Discrete Wavelet Transform (IDWT) and
calculating the SSIM index. Only the ones wighH™ BB8<C A
are kept. Thd8B8<C Awe used for optimal wavelet domain search is
0.9. From our preliminary evaluations, this is su cient for the signal
to maintain its quality similar to the original (as discussed in Sec. 8).
Note that this threshold is adjustable depending on the application's
requirements. The sparest wavelet representation is the one that
has the largest threshold. We calculdte by nding the ratio of
non-zeroes components iB The optimal wavelet domain is the
one that has the smallest average MSI for all the input signals of
the same pattern group. Finally, we repeat the same process to nd
optimal wavelet domains for all the patterns.

It is important to note that we only use DWT and IDWT to
guantify patterns' sparsity, not running them on either the wear-
able or mobile device. After knowing the optimal domains, we can
construct dierent and matrices for individual patterns and

Learning (BSBL) techniqué&§ as illustrated in Fig. 3. BSBL tech-
nique help to address the issue of high compressed sampling rate
by taking into account the temporal sparsity and correlation among
signal blocks.

To apply the BSBL technique, we consider a window of signal
(B of size N as a series of blocks of s&d.e.,

A S A

B »l%lstblock B »2Ya B »# 3V,

@

A signal with few blocks that are non-zeroes is called a block-sparse
signal. This study assumes that the biosignal patterns are block-
sparse in their respective optimal wavelet domains.

Each block B) in the signal is modelled as a combination of
two multivariant Gaussian distributions, i.e., the noiseless signal
?IBWe & #10W &, and the noise vecto?Pl=;X° # 10 X°.

W and g are the block sparsity control parameter and mutual
correlation matrix of the i-th block, respectivelXis a positive scalar
representing the noise andis the identity matrix. We estimate the
parameterd¥, g, andX by applying Type-ll-maximum likelihood
procedure to minimize the following cost function [78, 79],

e T S )

where o = 3806W 1°"""* W3 4.30 In contract to the con-
ventional BSBL technique, we dynamically apply di erent wavelet
basis (') to the Bayesian learning process based on received pattern
information and its optimal wavelet domain. After the learning has
converged, we ndBby using Maximum-A-Posteriori estimation,
ie,B= ot 91X, ot 9o 1 The signalis reconstructed
as, " = R

Till this point, we could signi cantly reduce the wireless trans-
mission rate. However, we might reach the stage where wireless
communication is no longer the bottleneck. Thus, we will need to
look elsewhere to increase energy e ciency further.

0

6 HARDWARE AND OS OPTIMIZATIONS

As PROS performs neural network inferences continuously in the
background, processing e ciency is critical. We will discuss in this
section the hardware and OS optimization techniques that we have
adopted from the state-of-the-art to push the processing e ciency
of PROS further.

Dynamic Voltage & Frequency Scaling. DVFS technique im-
proves energy e ciency by reducing the operating frequency and
voltage of the CPU core based on the workload's demas@l $1].

We could formulate the energy consumption of a CPU core as,
29D= 1+ 25 + gcocdaps + Bcodaz aasWhere ,+,5, gcocs2

store them on wearable and mobile devices. However, the conven- ) Ap= and) g.44-are total gate capacitance, operating voltage, switch-

tional compressive sensing theory would require the compressed
sample size to be around four-time the density of a sparse repre-
sentation B0, making it very challenging to work on near-sparse
biosignals. E.g., a muscle contraction pattern (Fig. 4) \8@&%«den-

sity will not work as it requires the compressed signal to have 1.44X
more samples than the original signal.

5.4 Recovery with Pattern Information and
Block Sparse Bayesian Learning

We devise an e cient reconstruction algorithm based on received
pattern recognition information and the Block Sparse Bayesian

ing frequency, static leakage current, running and sleep time, respec-
tively. As switching frequency is directly related to the operating
voltage, i.e.5/ 1+ +c a4p >:3° [81], we can signi cantly reduce

the power consumption by lowering, which also lowers- . DVFS,
however, has a point of diminishing returr8. When we decrease

5, the time required for completing a task{pJ increases, leading

to increased static energy consumption due g ocg¥Ve con rm

this phenomenon on an ARM MCU. As we can observe from Fig. 5,
the power e ciency of the CPU core increases up to 30%, i.e., from
7.1t0 9.1 DMIPS/mW (Dhrystone Million Instructions per Second
per milliwatt) when we reducexpg from 120 to 26 MHz anet
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Figure 5: E ciency Curve. Figure 6: Tickless Sleep.
from 1.14 to 1.05V. However, this scaling is not linear as the static
power becomes dominant at lowéss, i.e., the e ciency drop to 0.5
DMIPS/mW with5 = 100 |
To address this issue, we develop a lightweight DVFS algorithm

inside the PROS kernel. It is based on the principle that the CPU

should run at the maximum frequency of the lowest possible volt-
age while still meeting the deadlingd). The deadline can either
be the time where a signal window is returned by the DMA (Direct

Memory Access) peripheral or the desired value set by the devel-

oper. It follows three steps as follows. First, we $sand+ at the
maximum values %o, +<oc) and run all the background process-

ing (e.g., tinyPR primitives, preprocessing, compressive sensing,

etc.) required by the application to measure the CPU tir@g.(Sec-
ond, we estimate the lowest possible CPU frequency that still meet
the deadline, i.exg= = §d *@ 5Soce Fromkg=, we can nd
the lowest possible voltage rangé<g=) that could supportag-=.
Finally, we set the CPU frequency to the maximBnsupported by
+<g=. This is the optimal frequency for our workload. Depending
on the application's workload dynamic, we can run DVFS once at
the system startup or run it every scheduling cycle.

Dynamic Tickless Mode. Many OSes such as Linux or FreeR-
TOS B3 use a global hardware timer generating periodic ticks (e.g.,

100 or 1000 ticks per second). This is a nice and simple timebase for

OS tasks such as scheduling or synchronizatioB4.[However, it
negatively impacts low power performance as the CPU is constantly
wakened up from its sleep mode every the timer interrupts res.
This leads to a signi cant energy loss due to constantly waking up.
Fig. 6 illustrates the energy consumed by switching back and forth
between wake and sleep mode every 1ms will outweigh any energy
saved by putting the CPU to sleep.

To address this issue, we employ the dynamic tickless mode
(dyntick) [84 for PROS. Dyntick eliminates the periodic timer in-
terrupts when the system is idle. The CPU is put into sleep mode
until the next task is ready to run or an interrupt is red. Since
the kernel still needs to wake up when its tasks are ready, we im-
plement a low power timebase (e.g., the real-time clock peripheral
on ARM Cortex-M MCUSs) that can still run while the CPU is in
sleep mode. We set the alarm on this low-power timebase to wake
up the CPU when its tasks are ready. We also use it to track how
much time the CPU has slept to adjust the kernel timebase. This
signi cantly reduces the energy wasted due to constantly waking
up while maintaining the OS kernel's proper operations.

Adaptive Energy Threshold. Our tinyPR primitives (Sec. 4) are
powerful tools to recognize Pols. However, they might be too ex-
pensive to run on obvious background signals. Thus, we apply a
light-weight adaptive energy threshold method, which is quite ef-
fective in eliminating non-stationary background noise in speech

N. Pham, et al.

Figure 7: PROS hardware platform.

recognition systems§g5, 86. After a signal segrpent of sizehas
been captured, we calculate its energy by: = 1JG18°21 and
compare with a threshold value. The signal segment with lower en-
ergy level is eliminated. We adaptively update the threshold value
(_) based orx; preV|ous me?surements of background and Pol sig-

Isby_=U 9:1-9 16, V 9:19 %> [89. As the de nition of
background signals varies from one application to another, we will
need to adjust) andV accordingly.

PROS Abstractions.To provide a friendly interface for applica-

tion developers, we wrap up all underlying processing procedures

with the PROS scheduler. The scheduler provides the application
with the interfaces to (1) set up and con gure the TinyPR primi-

tives needed by the application, (2) wake up the application threads
for real-time responses when a subscribed Pol is detected. It also
handles background operations such as running TinyPR primitives
and PDCS algorithm.

We wrap the tinyPR models, pre-processing pipeline, and PDCS
algorithm as C++ classes and implement the PROS scheduler as
a FreeRTOS task. At the initial state, the developer can declare
the TinyPR models, con dence threshold, compression ratio, and
their mapping to application tasks. During runtime, if the output
probability of the positive class is over the de ned threshold, the
scheduler will notify the subscribed tasks for execution. Direct task-
to-task noti cation of FreeRTOS is employed to ensure e ciency.

The noti ed task could request to access the signal data bu ers, but

it will need to make a copy before they are overwritten.
7 IMPLEMENTATION

PROS Firmware Framework.We implement PROS based on the
FreeRTOS real-time kernel, which provides the base OS functional-
ities: preemptive task scheduling, dynamic memory management,
and synchronizations. We implement additional optimization mod-
ules: DVFS and dynamic tickless sleep mode, then integrate them
into the FreeRTOS kernel. We train our TinyPR primitives on an
Nvidia RTX 3090 GPU and use the TensorFlow Lite Microcontroller

to perform inferences on PROS hardware. The neural network

operations, MFCC calculation, adaptive energy detector are accel-
erated by SIMD (Single Instruction Multiple Data) and single-cycle
MAC (Multiplication-and-Accumulation) instructions. We use pre-
generated binary matrices stored in MCU's FLASH to perform the
PDCS algorithm. We also implement the optimal wavelet search
algorithm in MATLAB.

PROS hardware and mobile apps.We build a hardware pro-

totype (Fig. 7) to support all the operations of PROS. Speci cally,

it contains an ARM Cortex-M4F MCU (STM32L4R5, 2MB FLASH,
640KB RAM) with four e ciency modes, accelerated DSP, and neu-
ral engines. To support DVFS, we bypass the internal regulator
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