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Abstract
Continual Test-time adaptation (CTTA) continu-
ously adapts the deployed model on every incom-
ing batch of data. While achieving optimal accu-
racy, existing CTTA approaches present poor real-
world applicability on resource-constrained edge
devices, due to the substantial memory overhead
and energy consumption. In this work, we first
introduce a novel paradigm – on-demand TTA –
which triggers adaptation only when a significant
domain shift is detected. Then, we present OD-
TTA, an on-demand TTA framework for accurate
and efficient model adaptation on edge devices.
OD-TTA comprises three innovative techniques:
1) a lightweight domain shift detection mecha-
nism to activate TTA only when it is needed, dras-
tically reducing the overall computation overhead,
2) a source domain selection module that chooses
an appropriate source model for adaptation, en-
suring high and robust accuracy, 3) a decoupled
Batch Normalization (BN) update scheme to en-
able memory-efficient adaptation with small batch
sizes. Extensive experiments show that OD-TTA
achieves comparable and even better performance
while reducing the energy and computation over-
head remarkably, making TTA a practical reality.

1. Introduction
Deep neural networks (DNNs) have achieved remark-
able success in real-time edge tasks such as object detec-
tion (Wang et al., 2018), image recognition (Phan et al.,
2020), and autonomous driving (Grigorescu et al., 2020).
However, as a data-driven technique, DNNs typically
achieve optimal performance only when training and testing
data share the same distribution (Geirhos et al., 2018; Recht
et al., 2019). In real-world scenarios, testing data often expe-
riences distribution variations, known as domain shifts, due
to factors such as weather changes, sensor noise, or light-
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Figure 1. OD-TTA achieves a superior trade-off between memory,
energy, and accuracy compared to state-of-the-art CTTA baselines.
The radius of circles represents memory usage (See Appendix A.1).

ing conditions, which can result in significant performance
degradation (Hendrycks & Dietterich, 2019).

To address this challenge, a plethora of previous works have
developed continual test-time adaptation (CTTA) (Döbler
et al., 2023; Wang et al., 2022; 2020; Niu et al., 2022;
2023; Hong et al., 2023; Zhang et al., 2022), which en-
ables the pre-trained DNN model to continuously adapt to
unseen domains using only unlabeled test data in either a
self-supervised or unsupervised manner. Specifically, self-
supervised learning approaches generate pseudo-labels for
test data and fine-tune the model (Döbler et al., 2023; Wang
et al., 2022). In contrast, unsupervised approaches, such as
entropy minimization (Wang et al., 2020; Niu et al., 2022;
2023; Hong et al., 2023), are considered more efficient be-
cause they only update the model once per input batch using
entropy loss. Recently, several approaches have focused on
improving the efficiency of TTA to enable more practical
deployment on resource-constrained devices. EATA (Niu
et al., 2022) enhances efficiency by filtering out redun-
dant data to reduce energy consumption during adaptation.
EcoTTA (Song et al., 2023) and MECTA (Hong et al., 2023)
aim to reduce memory overhead, and SAR (Niu et al., 2023)
is designed to adapt the model with a batch size of 1. How-
ever, existing efficient TTA approaches fail to fundamentally
address the efficiency issue, as they still adhere to the CTTA
paradigm which continuously executes resource-intensive
backpropagation for each test batch. Additionally, consid-
ering that the domain shift between consecutive batches is
usually minor in real-world scenarios (Sun et al., 2022),
CTTA may not yield substantial accuracy improvements.

In this paper, for the first time, we introduce a more practi-
cal and efficient paradigm, referred to as on-demand TTA.
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Unlike continual TTA, on-demand TTA triggers model adap-
tation only when a significant domain shift that leads to an
unacceptable (application-defined) performance drop oc-
curs. This paradigm introduces several key challenges: (1)
on-demand TTA requires continuous monitoring of the data
distribution for every incoming sample/batch for potential
domain shift detection. However, efficiently quantifying
the domain shift (or performance drop) without labels is
challenging and remains under-explored in existing TTA
literature; (2) differing from continual TTA, where the dis-
tribution of consecutive batches usually remains similar,
on-demand TTA inherently deals with more severe shifts
after a domain shift is detected; (3) a notable limitation of
existing Batch Normalization (BN)-based TTA is its depen-
dence on large batch sizes (Wang et al., 2020; Niu et al.,
2022), which requires considerable amount of memory.

To address the challenges, we propose OD-TTA, an end-
to-end efficient On-Demand TTA framework designed for
edge devices. We drew three key insights from our ob-
servations and experimental studies to guide the design of
OD-TTA. First, we observed that entropy can be used not
only for adaptation (as in existing methods (Wang et al.,
2020)) but also for detecting domain shifts. Based on this,
we devised a novel lightweight domain shift detection mech-
anism using exponential moving average (EMA) entropy
to address the first challenge. Second, we found that adapt-
ing from different (similar or non-similar) source domains
yields distinct post-adaptation performance. Therefore, in-
stead of always adapting from the previous domain (as in
continual TTA), we propose a similar domain selection
pipeline that constructs and selects the closest domain for
adaptation, resulting in better performance and faster con-
vergence. Third, inspired by the insight that updating BN
statistics and BN parameters consumes different amounts of
memory and shows different sensitivity to batch sizes, we
designed a decoupled BN update scheme that adapts the BN
statistics and BN parameters asynchronously with different
batch sizes, enabling effective model adaptation within a
constrained memory budget.

We compare our proposed OD-TTA with strong baselines:
Tent (Wang et al., 2020), CoTTA (Wang et al., 2022),
EATA (Niu et al., 2022), SAR (Niu et al., 2023) and
MECTA (Hong et al., 2023) on Cifar10-C (Hendrycks &
Dietterich, 2019), ImageNet-C (Hendrycks & Dietterich,
2019), and SHIFT (Sun et al., 2022). Our proposed method
achieves the best accuracy and energy efficiency over all the
baselines while maintaining minimal memory requirements.
Specifically, OD-TTA achieves up to 9.7% higher accuracy
within comparable memory, and up to 47% energy saving
on Cifar10-C. In particular, OD-TTA is the only effective
method for BN-based models when operating with a batch
size of 1. Note that other normalization layers such as Group
Normalization compatible with a batch size of 1 perform

poorly with larger batch sizes as discussed in Section 4.2.

Our contributions are summarized as follows:
• We introduced the concept of on-demand TTA and pre-

sented OD-TTA, a novel on-demand TTA framework for
edge devices. OD-TTA comprises a lightweight domain
shift detector, a source domain selection module, and a
decoupled BN updating strategy.

• We implemented OD-TTA on Jetson Orin Nano and evalu-
ated its performance across multiple datasets. Our results
indicate that OD-TTA achieves superior performance with
minimal system overhead.

• Finally, our proposed paradigm and framework open the
door, for the first time, to making TTA a practical reality
with high accuracy and minimal system overheads on
resource-constrained edge devices.

2. Related Work
Continual Test-Time Adaptation. We summarize existing
CTTA methodologies into two categories: self-supervised
and unsupervised learning paradigms.

Self-supervised CTTA initially generates pseudo labels for
the testing data, then utilizes these labels to fine-tune the pre-
trained model in a supervised manner. Wang et al. (Wang
et al., 2022) developed a data augmentation method to con-
struct a mean-teacher model for generating pseudo-labels.
Bartler et al. (Bartler et al., 2022) introduced meta-learning
to optimize the initial parameters of the model. Dobler
et al. (Döbler et al., 2023) proposed the use of symmetric
cross-entropy to replace the regular cross-entropy loss of the
mean teacher adaptation, which proved to be better suited
to the mean teacher approach.

Unsupervised CTTA addresses the domain shift by updat-
ing certain layers of the model through unsupervised loss
functions. Benz et al. (Benz et al., 2021) highlighted the
critical role of batch normalization (BN) layers in adapting
to domain shifts. Following it, Wang et al. (Wang et al.,
2020) proposed an early TTA method, TENT, which up-
dates BN layers by simple entropy minimization. Then, Niu
et al. (Niu et al., 2022) introduced EATA, which improves
upon TENT by filtering out redundant and unreliable data
and re-weighting remaining data. SAR (Niu et al., 2023)
replaces the BN layer with a group normalization (GN)
layer to make TTA work even when the batch size is one,
but incurring high latency during adaptation. Moreover,
recent works proposed memory-efficient adaptation such
as MECTA (Hong et al., 2023) and Eco-TTA (Song et al.,
2023). MECTA (Hong et al., 2023) adapted the BN layer
to a novel MECTA normalization layer to reduce memory
requirements, while Eco-TTA (Song et al., 2023) optimizes
memory consumption during back-propagation by integrat-
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Figure 2. OD-TTA overview. The model performs regular infer-
ence while monitoring domain shifts. Once a shift is detected,
OD-TTA selects the most similar BN candidate from a candidate
pool and asynchronously adapts the BN statistics and affine param-
eters using a few new domain data.

ing lightweight meta-networks into the backbone. However,
EcoTTA is not a straightforward plug-and-play method, as it
requires redefining and retraining the model, while MECTA
is easier to implement on existing pretrained models.

Our work differs from all existing research in that we pro-
posed a completely new on-demand TTA paradigm and de-
vised a suite of techniques to ensure it outperforms existing
CTTA methods.

Domain Shift Detection. Domain shift detection is an es-
sential part of OD-TTA, which monitors the distribution
shift in the data stream to trigger the adaptation. Luo (Luo
et al., 2022) and Vovk (Vovk et al., 2003) employs an aux-
iliary neural network to predict the martingale for each
sample, serving as an indicator of domain shifts. Although
this method effectively detects unpredictable domain shifts,
it is memory-intensive because the auxiliary network (a
dynamic CNN) must be continuously updated. Guy et
al. (Bar Shalom et al., 2024) calculates a generalization
bound for the source domain using the source dataset and
identifies domain shifts by checking whether test samples
exceed this established boundary. While this approach
is less demanding in terms of memory usage during run-
time, it is data-intensive, requiring substantial training data
to establish an accurate generalization bound. Recently,
Chakrabarty (Chakrabarty et al., 2023) and Niloy (Niloy
et al., 2024) proposed using the mean of features extracted
from a batch of data to represent the domain of the batch
and reset the model to the source when the domain gap is
over the threshold to achieve reliable CTTA. However, these
feature-based methods rely heavily on large batch sizes,
making them unsuitable for online data streams where data
arrives sequentially and in smaller batches.

Our detection approach is both lightweight and effective,
offering a significant advantage over other methods by being
adaptable to any batch-size configuration.

3. On-demand Test-time Adaptation
3.1. Problem Formulation

In practical edge computing scenarios, sensor data arrive
sequentially as Sseq = {s1, s2, . . . , st, . . . }, where St rep-
resents either a single sample or a small batch of samples
arriving at time t. Domain shifts occur unpredictably, result-
ing in accuracy drop. On-demand TTA aims to adapt the
model fs only when a substantial domain shift results in un-
acceptable performance degradation. Following the CTTA
setting, on-demand TTA operates under the constraint that
the source dataset is not accessible during adaptation (Wang
et al., 2020). Moreover, the adaptation must be performed
directly on-device in an unsupervised manner, making it
suitable for resource-constrained edge environments.

3.2. OD-TTA Overview

Figure 2 provides an overview of OD-TTA, which compro-
mises two fundamental modules: domain shift detection and
model adaptation. When a pre-trained model is deployed
in real-world scenarios, it continuously performs inference
on the incoming data stream while monitoring potential
domain shifts using the proposed lightweight shift detec-
tion mechanism. Once a shift is detected, OD-TTA triggers
an adaptation process involving two steps. First, OD-TTA
selects the closest domain from a pool of candidates (pre-
trained or pre-adapted models), which can accelerate the
subsequent adaptation process and enhance the adaptation
performance by ensuring that adaptation starts from a more
similar distribution. Second, OD-TTA adapts the model
to align with the new domain data using a decoupled BN
updating strategy, which effectively reduces the memory
consumption while maintaining comparable accuracy.

3.3. Domain Shift Detection

The first objective in on-demand TTA is to detect the oc-
currence of domain shifts in a lightweight manner, as this
needs to be performed continuously on all incoming data.
However, since the ground truth labels of the test data are un-
available, monitoring accuracy drop caused by domain shift
is challenging. Inspired by entropy minimization, which
improves model performance by reducing the entropy of
predictions during training, we draw the following insight:

Insight 1: During inference, the model accuracy is inversely
correlated with the entropy of the predictions. The verifica-
tion can be found in Appendix A.2.1.

This correlation arises because entropy measures the uncer-
tainty in the model’s predictions (Wang, 2008). When there
is a domain shift, the model tends to produce more uncertain
predictions (higher entropy), as it struggles to generalize to
the new distribution. This insight leads us to explore using
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entropy as a potential metric to assess changes in model
accuracy due to domain shifts.

EMA entropy calculation: However, certain samples may
result in overly confident predictions (Wang et al., 2021),
disrupting this inverse correlation. Considering that data
arrives in a streaming manner during testing, sample-wise
entropy cannot accurately characterize the model perfor-
mance, as validated in Appendix A.2.1. Thus, we introduce
an Exponential Moving Average (EMA) strategy to smooth
the sample-wise entropy and incorporate historical entropy
values, providing a more stable accuracy estimation. The
formula for calculating the EMA entropy is as follows:

Et = m · Et−1 + (1−m) · xt. (1)

where Et represents the EMA entropy at time t, m denotes
the momentum factor (with a value between 0 and 1), and xt

is the entropy value of the current input sample at time t. The
momentum m influences the stability of the EMA entropy
and its sensitivity to domain shifts. A higher momentum
value causes the current entropy to contribute minimally
to EMA entropy, resulting in a more stable curve of EMA
entropy values but reducing sensitivity to domain shifts.

Shift determination: After completing each adaptation pro-
cess, OD-TTA records the EMA entropy over the next few
samples (e.g., 100) as the entropy baseline (EMAbase),
which reflects the current model’s capability on the adapted
domain data. As OD-TTA calculates the sample-wise
EMA entropy directly from the model inference outputs,
referred to as EMAsample, the extra computation is very
lightweight. If EMAsample − EMAbase exceeds a user-
defined threshold (EMAthr), an adaptation is triggered.
Setting the threshold (EMAthr) is crucial for balancing
sensitivity in shift detection and computational overhead
in adaptation. We leave the impact of the threshold in Ap-
pendix A.2.2.

3.4. Source Domain Selection

CTTA always adapts the model from the previous domain,
which may not be effective in on-demand TTA due to sig-
nificant distribution shifts. Based on the key observation
that different domains exhibit varying degrees of similarity
(e.g., foggy and frost seem closer, compared to foggy and
pixelate), we conducted experiments (Appendix A.3.1) and
draw the insight below:

Insight 2: The source domain (i.e., the domain before each
adaptation) can significantly impact the adaptation process,
including convergence speed and post-adaptation accuracy.

This insight motivates us to select the domain most similar
to the new domain from a candidate pool before adaptation,
referred to as source domain selection. This process consists
of two essential steps: (1) constructing an initial pool with

(a) (b)
Figure 3. (a) Candidate pool construction; (b) storage comparison
of saving only BN layers and the full model.

enough candidate models to ensure effectiveness from the
outset, and (2) assessing domain similarity to identify the
candidate most closely aligned with the new domain.

Candidate pool construction: Considering that a domain
essentially reflects the distribution of a specific set of data,
the process of creating a domain candidate pool can be
converted as generating multiple sets of data with diverse
distributions. Given that the training dataset naturally con-
tains dispersed distributions due to the varied data sources
and collection conditions, to construct the candidate pool,
we propose to split the training dataset into multiple subsets
and adapt the pre-trained model on each subset, as shown in
Figure 3(a) (Details see Appendix A.3.2)1.

Specifically, we first extract BN statistics that can represent
the domain characteristics (i.e., domain features) for each
training sample, given that BN statistics mainly capture
data distribution (Niloy et al., 2024). Shallow BN layers
are preferred because they capture more domain-specific
features (See Appendix A.3.2 and Appendix A.3.3). Sec-
ond, based on these domain features, we cluster the training
samples into M subsets using the K-Means algorithm (Mac-
Queen et al., 1967), with each cluster representing a do-
main2. Third, we adapt the pre-trained model on each sub-
set by only updating the BN layers in a supervised manner,
resulting in M domain candidates in the pool by saving
the BN layers. During runtime, we can further enlarge the
pool by adding historical domains (pre-adapted models) that
capture real-world domain characteristics.

As TTA usually only adapts the BN layer, we evaluate the
storage overhead of saving only the BN layers compared to
the entire model. For example, we find that for ResNet50,
saving BN parameters (45.44K) accounts for only 1/562
of the full model (25.56M), indicating that even storing
multiple domain candidates (e.g., 100) is negligible in terms
of storage consumption, as shown in Figure 3(b).

Similar candidate selection: The second step involves select-
ing a candidate domain that is most similar to the new com-
ing domain. The similarity measurement relies on extracting

1Note that candidate construction relies solely on the pure
training dataset, without any knowledge of the testing domains.

2Note that these domains (artificial) do not have physical mean-
ing while simply representing different data distributions.
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accurate domain features to represent the new domain us-
ing the source model. To address this issue, we cache N
samples from the new domain (e.g., N=128), which are
then processed through the source model to obtain the test
BN statistics. Specifically, let the k-th batch of samples be
denoted as {xi}i∈Bk

, where Bk is the set of indices for the
k-th batch. The BN mean for batch k, µk, is calculated as3:

µk =
1

|Bk|
∑
i∈Bk

ϕ(xi),

where |Bk| is the batch size, and ϕ(xi) denotes the output
of the second BN layer for sample xi. (Verification see
Appendix A.3.3.) The overall domain feature µdomain is then
computed as the average BN mean across all K batches:

µdomain =
1

K

K∑
k=1

µk.

Next, we compute the L2 distance between µdomain, and the
BN means µc of each candidate c in the pool. The candidate
with the smallest distance is then selected as the most similar
domain for subsequent adaptation:

c∗ = argmin
c

∥µdomain − µc∥2,

Here, c∗ denotes the selected candidate that minimizes the
L2 distance, ensuring that the closest match to the target
domain is chosen for effective adaptation.

3.5. Decoupled BN Update

To achieve desirable performance, most existing CTTA ap-
proaches require large batch sizes (e.g., 64 in Tent and
EATA), which consumes significant memory due to back-
propagation. SAR (Niu et al., 2023) proposed to replace
BN layers with Group Normalization (GN) layers to ad-
dress the batch size issue. However, GN is inherently more
computation-intensive and yields lower performance when
batch size is large (Wu & He, 2018). We delved into the
operation of BN layers with experiments (details see Ap-
pendix A.4) and derived the following insight:

Insight 3: Adapting only the BN layers with a small amount
of data can achieve good performance. Updating BN statis-
tics requires only a forward pass, which is memory-efficient
yet highly sensitive to batch size. In contrast, updating
BN parameters is less sensitive to batch size but involves
backpropagation, which is more memory-intensive.

The observation motivates us to decouple the BN adaptation
by updating of BN statistics in a larger batch size during
inference and BN parameters in a small batch size with
backpropagation, for the sake of memory saving.

3Capturing the BN statistics of the test batch requires only a
single forward pass, incurring minimal memory overhead.

BN statistics update: Having cached N samples for similar
model selection, we efficiently reuse these samples to form
a small dataset to adapt the BN layers. Specifically, the
samples are split into K batches. Inspired by the previous
work (Yang et al., 2022), we employ an Exponential Moving
Average (EMA) approach to integrate the BN statistics of the
source model and the batches of new domain data, defined
as follows:

Sk = (1− β) · Sk−1 + β ·Bk, (2)

where Sk represents the integrated BN statistics at batch k, β
is the momentum factor, Sk−1 is the BN statistics integrated
from the previous batch, and Bk represents the BN statistics
of the current batch. S0 is the BN statistics of the selected
candidate model. To ensure that the contributions from all
batches are appropriately compiled with the source statistics,
the momentum factor β is set to 1/K.

BN parameters update: After updating the BN statistics,
the selected model already captures the distribution of the
new data, but the BN parameters still need to be fine-tuned
accordingly through backpropagation. To fit into the limited
on-device memory, we aim to update the BN parameters with
a small batch size (e.g., 1). However, backpropagation using
a single sample is challenging due to the inherent instability
of unsupervised learning (Niu et al., 2023). To achieve
stable fine-tuning, we introduce two strategies: (1) a sample
filter to remove unreliable samples and (2) a contrastive loss
as a regularization term to refine the entropy loss.

We define the overall loss for adaptation as:
Ltotal = Lentropy + λLcontrastive,

where Lentropy is the regular entropy loss to ensure confident
predictions.Lcontrastive is a contrastive loss to regularize the
adaptation process. λ is a weighting factor to balance the
two components, empirically set to 0.05.

First, as noted in previous works (Niu et al., 2022; 2023),
high-entropy samples can negatively impact entropy mini-
mization, therefore we set a hard entropy threshold defined
as 0.4 · log(C), following the methods proposed in EATA
and SAR, where C is the number of classes and 0.4 is an
empirically derived optimal constant.

Second, benefiting from the source model selection, we can
obtain two distinct models: the poor source model (before
candidate selection) and the current model (after updating
BN statistics on the selected candidate). Inspired by con-
trastive learning (Jaiswal et al., 2020), the poor source model
can be utilized as an anchor to guide the back-propagation
process. This is achieved by constructing a contrastive loss
as a regularization term alongside the entropy loss. Math-
ematically, let p represent the predictions from the current
model undergoing adaptation, and panchor represent the pre-
dictions from the poor source model. The contrastive loss is
then computed as:
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Lcontrastive = −
(

p− panchor

∥p− panchor∥
· p

)
, (3)

Minimizing the contrastive loss systematically drives the
current model’s predictions away from those of the poor
model and towards a trajectory that aligns more closely with
the selected candidate model.

4. Evaluation
4.1. Experiment details

4.1.1. DATASETS

Cifar10-C and ImageNet-C (Hendrycks & Dietterich,
2019): a variant of the original CIFAR-10 (Krizhevsky et al.,
2009) and ImageNet (Deng et al., 2009), designed for do-
main adaptation tasks. It is constructed by applying 15
different types of common corruption.

SHIFT (Sun et al., 2022): it is a domain shift dataset de-
signed for autonomous driving systems that showcases three
domain shifts including daytime → night, clear → foggy,
and clear → rainy. Notably, the default resolution in SHIFT
is 1280×800, which will lead to high latency and memory
consumption on edge devices. To mitigate this issue, we
follow the setting in (Sun et al., 2022) and reduce the image
size to 640×400.

4.1.2. BASELINES

To the best of our knowledge, there are no existing works
on on-demand TTA. Therefore, we compare OD-TTA with
continual TTA baselines: CoTTA (Song et al., 2023), the
self-supervised method; TENT (Wang et al., 2020), the first
BN-based unsupervised method; EATA (Niu et al., 2022), a
data-efficient BN-based approach; SAR (Niu et al., 2023), a
Group-Normalization-based method for adapting with small
batch sizes; and MECTA (Hong et al., 2023), a memory-
efficient BN-based method. Notably, since MECTA is an
extra component which can added on existing BN-based
baselines, we implement MECTA upon EATA by following
the setting in the original paper.

4.1.3. ADAPTATION DETAILS

To ensure a fair comparison with baseline methods, we fol-
lowed the optimal default settings outlined in the baseline
papers. For our OD-TTA, we utilize 128/512 samples for
the source domain selection and decoupled BN update on
Cifar10-C/ ImageNet-C under batch size of 1. For batch
size 16/64, we utilize 512 samples for adaptation for both
datasets. In decoupled adaptation, we updated the BN statis-
tics in batch size 16/256/256 and BN parameters in 1/16/64.
(Memory usage see Figure 11(b).) The learning rates are set
to 1× 10−4 for CIFAR-10-C and 1× 10−5 for ImageNet-C.

For the domain shift determination, we set the user-defined
threshold EMAthr at 0.06/0.3 for Cifar10-C/ImageNet-C,
corresponding to an approximate accuracy drop of 5%. For
the semantic segmentation task on the SHIFT dataset, we
adapt the model using the learning rate of 1 × 10−4 and
set the threshold EMAthr at 0.1. In addition, we set a
hard entropy threshold of 1.2 for CIFAR-10-C and 5.5 for
ImageNet-C to trigger adaptation. This threshold ensures
that adaptation will be activated when the model’s perfor-
mance is critically low (below 10%).

4.1.4. IMPLEMENTATION

We evaluated OD-TTA on Jetson Orin Nano, a widely used
edge device equipped with a Cortex-A78AE CPU and an
NVIDIA Ampere GPU with 8GB RAM. For the software
environment, we utilize Python 3.8 and PyTorch 2.0 on
the Ubuntu 20.04 platform. Specifically, we evaluated the
classification task with batch sizes of 1 and 16 on edge
devices. For a batch size of 64 and the segmentation task, the
evaluation was performed on a server, as the edge resources
are too scarce to handle such evaluations.

4.2. Main Results

4.2.1. ACCURACY VS. MEMORY

Performance on Cifar10-C and ImageNet-C. We first
evaluate the adaptation accuracy and memory consumption
of OD-TTA using ResNet50 on CIFAR-10-C and ImageNet-
C. The results in Table 1 demonstrate the effectiveness of our
method in improving accuracy while maintaining low mem-
ory and energy consumption across various batch sizes on
edge devices. Compared to state-of-the-art baselines, OD-
TTA achieves a significant performance boost, particularly
on CIFAR-10-C across all batch size settings. For ImageNet-
C, OD-TTA outperforms other BN-based methods, includ-
ing CoTTA, Tent, EATA, and MECTA, across all batch
size settings. Notably, it stands out as the only BN-based
approach capable of achieving high performance under a
batch size of 1, which is critical for memory-constrained
edge devices. While SAR, the GN-based baseline, can also
handle batch size 1, it performs less effectively when op-
erating with larger batch sizes. The superior performance
of OD-TTA can be attributed to its effective source domain
selection and the use of large batch sizes for updating BN
statistics. The details are discussed in Appendix A.4.

In terms of memory consumption, our method demonstrates
comparable GPU memory usage to existing TTA baselines
such as Tent, EATA, and SAR under the same batch size.
MECTA, on the other hand, is the most memory-efficient
method, as it selectively updates BN layers and BN chan-
nels to minimize memory consumption. However, achieving
comparable accuracy (e.g., 33.1% on ImageNet-C) requires
MECTA to use 1231 MB, whereas OD-TTA achieves sim-
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Table 1. Comparison of accuracy (%) on CIFAR-10-C and ImageNet-C
using ResNet-50 along with memory consumption on Jetson Orin Nano.

Method
Batch Size = 1 Batch Size = 16 Batch Size = 64

Avg. Acc(%) Memory
(MB)

Avg. Acc(%) Memory
(MB)

Avg. Acc.(%) Memory
(MB)Cifar10 ImageNet Cifar10 ImageNet Cifar10 ImageNet

Source 59.5 26.9 242 59.5 26.9 358 59.5 26.9 809

CoTTA 10.0 0.1 889 78.1 28.9 3519 81.1 34.2 12179

Tent 10.1 0.1 434 78.0 26.0 1728 81.0 35.5 5779

EATA 22.8 0.8 506 78.3 31.9 1728 81.0 38.4 5783

SAR 68.3 35.3 429 70.4 35.2 1723 69.2 37.3 5780

MECTA 65.0 10.0 378 81.3 33.2 1231 81.3 33.7 3836

Ours 78.0 33.1 414 83.0 37.4 1677 84.9 40.4 5763

Table 2. Adaptation mIoU (%) on SHIFT along with mem-
ory consumption.

Method SHIFT types Avg. Memory
Day→Night Clear→Foggy Clear→Rainy

Source 27.30 17.74 10.98 18.67 502

CoTTA 24.43 20.96 15.88 20.42 2065

Tent 24.72 22.12 17.71 21.52 1163

EATA 24.58 21.53 16.54 20.88 1216

SAR 23.61 7.63 4.22 11.82 1185

MECTA 24.23 20.59 15.42 20.08 855

Ours 31.08 25.17 19.05 25.10 1165

(a) (b)

Figure 4. Energy consumption for processing domain data se-
quences of varying lengths under batch size = (a) 1 and (b) 16.

ilar accuracy with only 414 MB, highlighting its superior
balance between memory efficiency and accuracy.

SAR and MECTA aim to address distinct challenges of the
small batch size issue and memory consumption. However,
both methods are less energy-efficient compared to other
approaches. This will be further discussed in Figure 4.

Performance on SHIFT dataset. Given that semantic
segmentation is significantly more computationally inten-
sive than classification, we evaluate the performance on the
SHIFT dataset using a batch size of 1. The results in Table 2
detail the mIoU scores across different domain shifts. We
can observe that: (1) OD-TTA consistently outperforms all
baselines across all types of domain shifts, achieving a sig-
nificantly higher average mIoU; (2) the GN-based method,
SAR, which outperforms BN-based baselines (CoTTA, Tent,
EATA, and MECTA) in classification tasks, shows the poor-
est performance in segmentation tasks. The overall results
highlight the robustness of OD-TTA and its ability to adapt
effectively to real-world domain shifts, underscoring its
practical utility in dynamic environments.

Energy Consumption. The energy consumption of on-
demand TTA is closely related to domain shift frequency
(the length of the domain data). In real-world scenarios, the
frequency of domain shifts can vary significantly. When
domain changes are infrequent or a single domain persists
for an extended period, on-demand TTA achieves higher
efficiency by minimizing the frequency of adaptations. To
evaluate the energy efficiency of OD-TTA, we implemented
all methods on the Jetson Orin Nano with batch sizes of 1

and 16 (64 is not available on the edge). The evaluation
measured total energy consumption across domains of vary-
ing lengths, ranging from 1,000 samples (transient domains)
to 10,000 samples (long-lasting domains).

Figure 4 illustrates the results, highlighting that OD-TTA
achieves up to 47.1% energy savings compared to other
adaptation methods in both batch size settings. Unlike
CTTA methods which perform gradient-based updates for
every batch of data, OD-TTA performs a one-time adapta-
tion using only a few samples from the new domain. One-
time adaptation eliminates the need for repeated computa-
tions during subsequent inference, resulting in consistently
lower energy consumption. Notably, the energy-saving ad-
vantages of OD-TTA become increasingly significant as the
domain persists for longer durations.

4.3. Detailed results

Then, we present the ablation study that assesses the effec-
tiveness of different modules in OD-TTA.

4.3.1. ANALYSIS OF SHIFT DETECTION

To evaluate the domain shift detection module, we analyze
its performance during the adaptation process on CIFAR-
10-C. As shown in Figure 5, the EMA entropy fluctuates
along the data stream, reflecting changes in domain char-
acteristics and triggers when detecting an unpredictable
increase. Results on more domain sequences are shown in
Appendix A.5.3.

Untriggered shift. OD-TTA successfully detected 13 out of
15 domain shifts. The two undetected shifts occurred dur-
ing transitions from Gaussian noise to shot noise and from
motion blur to zoom blur. However, as reported in Table 7,
these shifts did not result in accuracy drops. Specifically,
the transitions from Gaussian noise to shot noise and motion
blur to zoom blur actually led to accuracy improvements of
1.4% and 5.2%, respectively. These results demonstrate that
OD-TTA avoids unnecessary adaptation when domain shifts
do not substantially impact model performance.

Detection sensitivity. For the detected domain shifts, our
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Figure 5. EMA entropy change along data stream on Cifar10-C. The red dotted lines are where domain shift is detected. Domains change
after every 10,000 samples, as denoted by the changes in background color, which visually highlight transitions between domains.

Table 3. Evaluation of source model selection on CIFAR-10-C and
ImageNet-C.

Adaptation from. Batch Size = 1 Batch Size = 16 Batch Size = 64

Cifar10 ImageNet Cifar10 ImageNet Cifar10 ImageNet

Prev-Domain 79.5 27.8 84.4 31.4 86.0 33.4

Source-Model 80.6 32.8 84.6 35.4 85.9 37.5

Selected-Domain 81.0 34.6 85.7 36.7 86.1 39.1

method identified the shift within fewer than 100 samples
for 7 domains, demonstrating its ability to quickly capture
significant domain shifts. However, in the case of the transi-
tion from fog to brightness, it required 2168 samples from
the new domain to detect the shift. This late determination is
attributed to the relatively small accuracy drop of only 6.0%
from fog to brightness, making the shift less pronounced
and more challenging to detect promptly. However, it is
unnecessary to adapt a model if the accuracy drop is small.

4.3.2. ANALYSIS OF SOURCE DOMAIN SELECTION

In Figure 3(a), we constructed a pool of domain candidates
and selected the most similar candidate to initiate adapta-
tion. Here, we further evaluate the source domain selection
scheme. Specifically, we remove the domain shift detec-
tion module and directly adapt the model using decoupled
adaptation with the first 1024 samples from each domain
to ensure optimal adaptation performance. We compare it
against two settings: adapting from the previous domain
and adapting directly from the source model.

Table 3 shows the comparison results. The results demon-
strate that, for every batch size setting and dataset, domain
selection significantly enhances overall adaptation perfor-
mance. Notably, adapting from the source domain outper-
forms continual adaptation but remains less effective than
our source model selection approach.

4.3.3. ANALYSIS OF DECOUPLED BN UPDATE

In the decoupled BN update method, two primary factors
influence adaptation performance: 1) the number of sam-
ples used for adaptation, and 2) the contrastive loss. In
this section, we evaluate the impact of the two factors on
ImageNet-C. Firstly, we explored the impact of the sam-
ple size on adaptation efficacy. We remove the detection
module and adapt the model using the first few samples for

Figure 6. Impact of contrastive
loss and number of samples.

Table 4. Adaptation accuracy
(%) on CIFAR-10-C using Mo-
bileNetV2.
Method BS=1 BS=16 BS=64

CoTTA 10.1 71.1 72.8

Tent 10.0 70.8 73.2

EATA 10.1 71.2 73.8

MECTA 12.4 11.3 14.4

Ours 68.3 73.8 74.4

adaptation. As shown in Figure 6, our findings indicate that
increasing the number of adaptation samples enhances over-
all performance; however, the benefits become trivial when
the number of samples exceeds 1024. Secondly, regard-
ing the contrastive loss, the experimental results presented
in Figure 6 reveal that employing this technique results
in up to 2.6% accuracy improvement on the ImageNet-C,
demonstrating its effectiveness in guiding the adaptation pro-
cess towards the target domain. Additionally, we conduct a
thorough comparison of adaptation under a few data with
continual adaptation. We also evaluate the effectiveness of
decoupled adaptation methods in detail in Appendix A.4.

4.3.4. EFFECTIVENESS ON MOBILENET

To evaluate the OD-TTA on other BN-based model archi-
tectures, we implement OD-TTA on MobileNetV2 (Sandler
et al., 2018) on Cifar10-C. We did not compare OD-TTA
with SAR, as GN/LN-based MobileNet is not publicly avail-
able. As Table 4 shows, OD-TTA consistently outperforms
all the baselines in each batch size setting.

5. Conclusion
This paper proposes a novel concept called on-demand TTA,
which triggers adaptation only when a domain shift is de-
tected. We introduce OD-TTA, a framework designed to re-
alize on-demand TTA for edge devices. OD-TTA comprises
three key components: domain shift detection to monitor
distribution shifts on the fly, source domain selection to op-
timize the efficacy of the source model for adaptation, and
decoupled BN adaptation to update the model efficiently
under limited memory constraints. The experiment result
shows that OD-TTA significantly outperforms baselines
while maintaining comparable memory overhead.
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Impact Statement
In this work, we introduced a novel concept: on-demand
test-time adaptation (TTA), a more practical and energy-
efficient paradigm tailored for real-world edge devices. To
realize this concept, we developed OD-TTA, an innova-
tive on-demand TTA framework designed specifically for
memory-constrained devices. OD-TTA enables efficient
and selective adaptation, ensuring high performance while
minimizing resource usage, making it a robust and scal-
able solution for real-world deployment. For the limitations
of our OD-TTA, our approach is specifically designed for
widely-used BN-based models. Other architectures, such as
Vision Transformers, are not in the scope of this paper.
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A. Appendix
A.1. Visualization of Accuracy, Memory and Energy

(a) (b)

Figure 7. The trade-off of OD-TTA between memory usage, energy efficiency, and accuracy compared to state-of-the-art CTTA baselines
on ImageNet-C under (a) batch size = 1 and (b) batch size = 16.

We visualized the comparison of OD-TTA with other baselines in terms of accuracy, memory, and energy consumption in
Section 1. Specifically, we present results on ImageNet-C using ResNet-50 with a batch size of 16. To provide a clearer
trade-off analysis, we include visualizations for both batch sizes of 1 and 16 in this section.

The energy consumption represents the total energy required to process 10,000 samples, as shown in Figure 4. Accuracy
and memory consumption results are summarized in Table 1. Our results demonstrate that under both batch size settings,
OD-TTA achieves high performance while consuming the least energy, all while maintaining comparable memory overhead.
In contrast, SAR and MECTA, which are specifically designed to address the single-batch-size issue and memory constraints,
respectively, fail to perform well in terms of energy efficiency.

A.2. More Explanation on Domain Shift Detection

In this section, we will give a thorough analysis of the domain shift detection mechanism.

A.2.1. CORRELATION BETWEEN ACCURACY AND ENTROPY

Inspired by entropy minimization in unsupervised learning, which improves model performance by reducing the entropy of
predictions, we present the inverse correlation between model accuracy and average entropy as Insight 1 in Section 3.3. This
insight leads us to explore using entropy as a potential metric to assess changes in model accuracy due to domain shifts.

To verify Insight 1, we conducted an experiment using a pre-trained ResNet50 model on CIFAR-10-C. We first adapted
the source model to four selected domains using supervised learning to ensure effective adaptation. Then, we tested the
adapted models on several subsets4 sampled from other domains, calculating the average accuracy and entropy on each
subset. The results are scattered in Figure 8(a), where each color represents one adapted model, and each scatter point
denotes the accuracy and entropy of one subset. It is evident that entropy and accuracy are inversely correlated, with the
relationship appearing nearly linear. This inverse correlation motivates us to approximate model performance by tracking
the entropy of each input sample, without the need for ground-truth labels.

However, this correlation is demonstrated on a subset of samples (subset-wise) and does not consistently hold in real-world
scenarios where data is processed in a streaming manner. In such cases, DNNs operate on each individual sample, resulting
in significant variations in sample-wise entropy. Specifically, Figure 8(b) illustrates the sample-wise entropy (denoted by
each scatter) when the streaming samples shift from the Source domain to the Impulse domain. It is evident that while
most samples in the Impulse domain exhibit significantly higher entropy levels, some samples still present low entropy (i.e.,
outliers), hindering the direct detection of domain shifts using sample-wise entropy.

4From each domain, we constructed five subsets, resulting in a total of 75 subsets. Each subset consists of 500 randomly selected
samples.
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(a) (b) (c) (d)

Figure 8. (a) The correlation between entropy and accuracy. (b) Sample-wise entropies cannot directly represent the accuracy because
there are some over-confident data (outliers). (c) The EMA entropy will increase when there is a domain shift to different levels from
source(96.1%) to motion blur (64.6%) and impulse noise (24.2%). (d) The impact of momentum in domain shift detection.

A.2.2. MORE EVALUATIONS OF EMA ENTROPY

We proposed the lightweight domain shift detection approach based on the EMA entropy. Figure 8(c) illustrates the EMA
entropy curves for two adaptations, which clearly indicate the effectiveness of EMA entropy in detecting domain shifts.

A critical hyperparameter is the momentum value, denoted by m. To analyze the detection performance, we plot the
EMA entropy changes across the domain sequence of ImageNet-C using ResNet50 under different momentum values in
Figure 8(d). The x-axis represents the input sample stream, with domain changes marked by black vertical lines. The blue
and red curves present the EMA entropy of the samples under the momentum of 0.999 and 0.995, respectively. Once a
domain shift is detected, OD-TTA initiates adaptation for the next 256 samples, indicated by the shaded red and blue areas.

We can observe that: 1) both momentum settings (0.999 and 0.995) accurately capture domain shifts, promptly triggering
the adaptation process, and 2) there is a noticeable trade-off between the EMA entropy fluctuation and detection sensitivity
to domain shifts. While a momentum of 0.995 detects shifts more quickly, it also exhibits greater variance within a domain,
potentially leading to unexpected triggers if the determined threshold is too low. In contrast, a momentum of 0.999 provides
more robust detection, but requires more samples and time to confirm a shift; 3) following adaptation, the EMA entropy
decreases to a new level, suggesting that each domain possesses a unique entropy signature.

A.3. Source Domain Selection

A.3.1. ADAPTATION FROM CLOSER DOMAIN RESULTS IN HIGHER EFFECTIVENESS

CTTA always adapts the model from the previous domain, which may not be effective in on-demand TTA due to significant
distribution shifts. Based on the key observation that different domains exhibit varying degrees of similarity (e.g., foggy
and frost seem closer, compared to foggy and sunny), we hypothesize that the source domain (i.e., the domain before
adaptation) can significantly impact the adaptation performance. To test this, we adapted the model to the Snow domain
(target domain) from three different source domains: Brightness, Saturate, and Gaussian noise. The accuracies of directly
performing inference of the three source-domain models (i.e., models trained with the data from each domain only) on the
Snow domain data were 85.2%, 74.1%, and 61.3%, respectively, which indicates that Brightness is the closest to Snow,
followed by Gaussian noise and Saturate.

(a) (b)

Figure 9. (a) Adaptation to a target domain from different source domains. (b) Clustering examples on the training set of ImageNet for
candidate pool construction.
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Figure 9(a) displays the adaptation accuracies with a different number of batches. We can observe that adapting from a
closer domain (i.e., Brightness) yields higher accuracy after adaptation, suggesting that the source domain indeed affects the
adaptation performance.

A.3.2. CANDIDATE POOL CONSTRUCTION

In candidate pool construction, a key challenge lies in extracting meaningful domain features for each sample in the training
datasets. Specifically, we use the test sample BN mean from the second BN layer to represent the domain feature of each
sample (the rationale for using second-layer BN mean as a domain characteristic is discussed in Appendix A.3.3).

From the previous work (Niu et al., 2023), we acknowledge that using testing batch BN fails to capture domain information
effectively when the batch size is 1 (single sample). However, our findings indicate that this failure is primarily due to the
inability of single samples to provide valid variance estimates. In contrast, the BN mean is less affected. Thus, we use the
BN mean as the domain feature for each sample and cluster these features into subsets to create synthetic domains.

Figure 10 illustrates examples of clustering results. While we cannot explicitly define the domain of each subset, the clusters
clearly exhibit distinct domain styles. For instance, cluster 1 (Top left in Figure 9(b)) predominantly contains samples with
green, plant-like backgrounds, whereas cluster 5 (Bottom middle in Figure 9(b)) features samples in a white environment.

It is important to note that extracting domain features on a single sample is not an entirely accurate approach. However, it
has proven to be an empirically effective method for clustering.

(a) (b)

Figure 10. (a) Adapted model accuracy on other domains. (b) L2-based similarity calculated by BN mean from layer1.0.bn1 layer.

A.3.3. SIMILAR DOMAIN SELECTION.

In our work, we hypothesize that domain similarity can be effectively captured using the Batch Normalization (BN) statistics
of models adapted to each domain. As discussed in Section 3.4, we utilized the BN statistics (mean) of the shallow BN layer
to represent the domain information of a few batches of samples.

Defining domain similarity. Domains are considered similar if a model adapted to one domain performs well on another
domain’s dataset. Conversely, if the model’s performance is poor, it suggests a low similarity between the domains. To
quantify this, we use the performance similarity matrix as the ground truth, as shown in Figure 10(a). In detail, we first utilize
the first 128 samples to adapt the source model to each target domain using EMA BN updates and entropy minimization,
then we test the adapted model on all the domains in Cifar10-C. The performance of the domain A model on the domain B
dataset can represent the similarity of the domains.

Measuring domain similarity via BN statistics. If the BN statistics of a model are adapted to a new domain, using a few
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Table 5. Adaptation accuracy (%) of using a few samples from the domain (Few-data adaptation). We compared the results with continual
Tent which uses entropy minimization on test batch statistics. To illustrate the key role of adapting the BN statistics, we also reported the
results of only adapting the BN statistics using EMA BN without updating the affine parameters, as Few-data BN Stats. and adapting only
through test batch statistics without updating affine parameters, as Continual BN Stats.

Method gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg. Acc

Continual BN Stats. 68.2 71.3 60.3 83.5 64.6 81.4 85.2 84.6 83.5 86.8 90.7 84.7 74.5 78.8 70.7 77.9

Continual Tent 68.8 72.8 62.5 83.2 65.3 81.3 84.8 83.6 83.3 85.2 89.6 84.8 75.8 79.2 72.3 78.2

Few-data BN Stats. 67.9 73.7 62.0 72.1 65.8 79.4 88.6 88.4 85.4 88.5 92.9 80.8 76.9 70.3 71.7 77.6

Few-data Adapt. 67.9 73.7 62.3 72.2 66.1 79.4 88.6 88.5 85.4 88.6 92.9 81.4 76.9 71.0 72.1 77.8

samples, it can be utilized as a representation of the domain. To evaluate the effectiveness, we compare the running mean
values from the Batch Normalization (BN) layers of models adapted to these domains. For any two domains i and j, the
similarity is calculated using the L2 distance between their BN statistics:

dij = ∥µi − µj∥2,

where µi and µj are the running mean vectors extracted from a specific BN layer of models adapted to domains i and j,
respectively.

To normalize these distances into a similarity score in the range [0, 1], we apply the following transformation:

sij = 1− dij − dmin

dmax − dmin
,

where dmin and dmax are the minimum and maximum distances across all domain pairs. The resulting similarity matrix S
captures how closely each pair of domains is related based on their BN statistics. As Figure 10(b) shows, the similarity
calculated using the second BN layer can be closely aligned with the accuracy matrix in Figure 10(a), which is the ground
truth of the similarity.

(a) (b) (c)

Figure 11. (a) BN layer correlation to the true domain similarity. The layers are ordered from shallow to deep, and their correlations are
represented as a bar chart. (b) The memory consumption of updating BN statistics (forward pass) and affine parameters (backward pass).
The memory usage is measured on the server.

Which BN layer provides the best measurement? By leveraging the similarity matrix derived from BN statistics, we aim
to assess its alignment with the accuracy matrix, which serves as the ground truth. This alignment is quantified using the
Pearson correlation coefficient between the similarity matrices of the BN statistics and the performance.

As shown in Figure 11(a), the second BN layer demonstrates the strongest alignment with the ground truth. This indicates
that it can serve as a reliable metric for measuring domain similarity.
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Table 6. Adaptation accuracy (%) of decoupled BN adaptation (Decouple Adapt.) compared to conventional synchronized adaptation
using 128 samples. We compared the decoupled adaptation with three baselines: (1) BN Stats: adapting only the BN statistics; (2) BN
Adapt: jointly updating BN statistics and affine parameters through entropy minimization; (3) Adapt. with Filter: further adapting the
model using only low-entropy data.

Method gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg. Acc

BN Stats. 67.9 73.7 62.0 72.1 65.8 79.4 88.6 88.4 85.4 88.5 92.9 80.8 76.9 70.3 71.7 77.6

BN Adapt. 67.9 73.7 62.3 72.2 66.1 79.4 88.6 88.5 85.4 88.6 92.9 81.4 76.9 71.0 72.1 77.8

BN Adapt.
with Filter 68.9 74.6 61.7 70.6 64.8 79.8 88.5 87.8 87.0 87.6 92.5 82.5 77.3 71.4 72.2 77.8

Decoupled
Adapt. 70.2 75.1 62.7 74.7 66.5 81.6 89.7 89.6 87.1 89.9 94.1 83.8 78.5 76.0 73.3 79.5

A.4. Decoupled BN Adaptation

A.4.1. ADAPTION FROM ONLY A FEW DATA CAN MITIGATE DOMAIN SHIFT

Inspired by previous work (Benz et al., 2021), corruption robustness can be improved by capturing the BN statistics of
only 32 samples. We hypothesize that adapting to a domain using a small number of samples is sufficient to achieve a
robust model for the remaining samples in that domain. By employing the EMA strategy to update BN statistics and entropy
minimization to update the affine parameters on 128 samples in CIFAR-10-C, the inference accuracy on the remaining
samples is illustrated in Table 5. We compared the few-data adaptation with Tent, the continual adaptation method based on
test batch statistics and entropy minimization. The momentum of few-data adaptation is set to 0.15.

In Table 5, Continual BN Stats. continuously updates the Batch Normalization (BN) statistics using test batch statistics.
Continual Tent adapts the BN affine parameters through entropy minimization while also updating the BN statistics using
test batch statistics. Few-data BN Stats. leverages 128 samples to update the BN statistics via an Exponential Moving
Average (EMA) approach. Few-data Adapt. further extends this by utilizing the 128 samples to update both the BN statistics
with EMA BN and the affine parameters through entropy minimization.

We can see that the few-data adaptation achieves comparable results to continual Tent across most corruption types, with
a minimal difference in the average accuracy (77.8% vs. 78.2%). This demonstrates that adapting to the domain using a
small subset of samples is sufficient to maintain robust performance on the remaining data. Moreover, this approach enables
adaptive triggering of adaptation using only a few samples, making it both practical and efficient.

A.4.2. ADAPTING BN STATISTICS VS. AFFINE PARAMETERS

The results of Continual BN Stats. and Continual Tent in Table 5 illustrated that updating the BatchNorm (BN) statistics is
crucial for improving adaptation performance, as demonstrated by Figure 11(c). The sensitivity of BN statistics to batch size
is evident from the performance degradation with smaller batch sizes. This indicates that a sufficient number of samples per
batch is necessary to capture reliable BN statistics for effective adaptation. However, as shown in Figure 11(b), updating BN
statistics with larger batch sizes is feasible from a memory perspective. Even with a batch size of 32, the memory usage for
updating BN statistics is significantly lower than updating the affine parameters with a batch size as small as 4. Moreover,
with a batch size of 4, the memory requirement for updating BN parameters of ResNet50 can easily exceed the available
memory space of some edge devices such as the Raspberry Pi Zero 2W with only 512MB DRAM.

This comparison highlights the efficiency of adapting BN statistics alone. It not only delivers robust performance when
sufficient batch size is used but also enables memory-efficient adaptation. This balance between performance and resource
usage makes updating BN statistics a practical and effective approach for domain adaptation, especially when resources are
constrained.

A.4.3. DECOUPLED ADAPTATION EVALUATION

After confirming that using a small amount of data for adaptation can achieve performance comparable to continual
adaptation, we further evaluate the decoupled BN adaptation strategy. The Few-data Decoupled Adaptation results in
Table 6 demonstrate the effectiveness of this approach, where BN statistics are updated using a batch size of 16, and affine
parameters are adapted with a batch size of 1. We compared the decoupled adaptation with three baselines in a batch size
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Table 7. Comparisons with state-of-the-art methods on Cifar10-C (severity level 5) under batch size of 1 regarding Accuracy (%). The
bold number indicates the best result.

Method Noise Blur Weather Digital Avg.
gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg

Source 31.9 38.4 24.2 68.8 45.0 64.6 74.3 83.9 76.7 80.1 91.3 45.2 69.1 28.0 71.2 59.5

CoTTA 10.2 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Tent 10.9 9.9 10.2 10.0 9.9 10.2 10.0 9.9 10.1 10.1 9.9 10.0 10.1 9.9 9.9 10.1

EATA 17.5 18.7 13.9 22.8 15.8 23.2 23.6 27.7 26.0 31.2 32.0 32.8 18.5 22.1 17.0 22.8

SAR 54.2 58.6 41.9 79.6 41.9 75.3 82.0 83.4 79.4 79.2 91.9 87.6 68.3 27.7 73.1 68.3

MECTA 54.6 57.0 48.2 69.3 47.3 67.7 70.3 74.1 71.3 75.9 79.4 81.2 58.7 64.6 55.5 65.0

Ours 71.5 72.9 67.9 79.0 47.8 80.9 86.1 87.1 87.0 89.2 83.2 86.8 78.8 76.0 75.4 78.0

Table 8. Comparisons with state-of-the-art methods on ImageNet-C (severity level 5) under batch size of 1 regarding Accuracy (%). The
bold number indicates the best result.

Method Noise Blur Weather Digital Avg.
gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg

Source 18.1 20.1 17.4 19.7 10 22.2 26.5 32.3 32.9 38.7 68.3 25.3 14.1 12.8 44.7 26.9

CoTTA 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1

Tent 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.2 0.2 0.1

EATA 0.3 0.3 0.3 0.3 0.1 0.4 0.7 1.1 1.4 1.7 2.2 1.0 0.7 0.8 0.7 0.8

SAR 20.4 27.8 31.2 20.0 17.4 25.3 27.6 42.1 44.9 45.6 67.5 40.4 23.5 41.5 54.1 35.3

MECTA 6.9 8.7 7.7 5.7 5.8 8.8 11.1 16.6 12.7 18.7 22.7 0.2 8.8 9.0 7.4 10.0

Ours 28.2 21.8 28.1 10.9 10.1 13.6 41.3 43.2 38.7 57.3 72.3 11.5 42.3 28.1 49.9 33.1

of 16: (1) BN Stats.: adapting only the BN statistics; (2) BN Adapt.: jointly updating BN statistics and affine parameters
through entropy minimization; (3) Adapt. with Filter: further adapting the model using only low-entropy data following
EATA and SAR. The results indicate that decoupled adaptation not only outperform the few-data adaptation by 1.7%, but
also perform better than continual Tent in Table 5. The improvement is attributed to updating BN statistics before entropy
minimization, which helps guide the entropy minimization step in a more accurate direction during unsupervised adaptation.

In all baseline methods, we use a batch size of 16. For our Decoupled Adaptation approach, we employ a batch size of 16 for
computing BN statistics while using a batch size of 1 for updating affine parameters. As a result, our memory consumption is
equivalent to that of BN Adaptation with a batch size of 1. The results indicate that our method achieves higher performance
while maintaining low memory overhead.

A.5. More Evaluation on Cifar10-C and ImageNet-C.

A.5.1. DETAILS OF THE MAIN RESULTS

The additional results presented in the appendix (Table 7 and Table 8) provide a granular view of OD-TTA’s performance
across various corruption types and under a batch size of 1.

On CIFAR-10-C (Table 7), OD-TTA demonstrates a significant performance advantage over state-of-the-art methods across
almost all corruption types under severity level 5. While SAR achieves the highest accuracy in specific corruptions, such as
defocus blur, brightness, and contrast, OD-TTA outperforms the baselines overall, achieving an average accuracy of 78.0%.
This marks a significant improvement over SAR (68.3%) and MECTA (65.0%), underscoring OD-TTA’s effectiveness in
adapting to diverse corruptions while maintaining competitive memory efficiency.

For ImageNet-C (Table 8), OD-TTA maintains competitive performance and strikes a balance between accuracy and memory
consumption. While SAR achieves slightly higher average accuracy (35.3%) due to strong performance in specific noise and
blur categories, OD-TTA performs better across a wider range of corruptions, particularly in weather-related corruptions
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like fog (57.3%) and digital corruptions like JPEG compression (49.9%). With an average accuracy of 33.1%, OD-TTA
demonstrates robustness in handling domain shifts, even in large-scale and complex datasets like ImageNet-C.

The results further emphasize the advantages of OD-TTA. First, OD-TTA demonstrates consistent performance across
corruption types. While some baselines perform well in specific categories, OD-TTA achieves high accuracy consistently
across all corruption types, highlighting its generalizability. Second, despite achieving near state-of-the-art accuracy,
OD-TTA maintains a significantly lower memory footprint compared to other methods, particularly Tent and CoTTA. Third,
the ability to handle a batch size of 1 with high accuracy (78.0% on CIFAR-10-C, 33.1% on ImageNet-C) sets OD-TTA
apart as a practical solution for edge scenarios.

A.5.2. DOMAIN SHIFT DETECTION ON IMAGENET-C

Figure 12. EMA entropy change along data stream on ImageNet-C. The red dotted lines are where domain shift is detected. Domains
change after every 10,000 samples, as denoted by the changes in the background color.

We also evaluate the detection performance on ImageNet-C. As shown in Figure 12, the EMA entropy fluctuates along the
data stream, reflecting changes in domain characteristics and triggers when detecting an unpredictable increase.

Untriggered shift. OD-TTA successfully detected 13 out of 15 domain shifts. The undetected shifts occurred during
transitions from shot noise to impulse noise and from snow to frost. The untriggered detection did not incur significant
accuracy drop. Specifically, the transitions from shot noise and motion blur to impulse led to accuracy improvements of
21.8%. The shift from snow to frost only results in 4.5% performance drop. These results demonstrate that OD-TTA avoids
unnecessary adaptation when domain shifts do not substantially impact model performance.

False Trigger. Compared to the CIFAR-10-C results in Figure 5, the ImageNet-C results exhibit 7 unnecessary false triggers,
particularly in defocus blur, glass blur, and contrast. These false detections can be attributed to the model’s poor performance
even after adaptation. Notably, the accuracy remains low at 10.9%, 10.1%, and 11.5% for these corruptions, indicating that
the adaptation process struggles to improve performance. Since we set a hard threshold to trigger adaptation when accuracy
drops below approximately 10%, frequent triggers occur in these poorly performing domains. As a result, the detection
scheme attempts multiple adaptation steps in an effort to optimize the model, leading to unnecessary re-triggering.

A.5.3. IMPACT OF DOMAIN CHANGE ORDER

The order of domain changes can significantly influence the performance of OD-TTA, as the domain shift detection varies in
different domain orders. Table 9 reports the adaptation accuracy (%) of different methods on a randomly generated domain
change sequence for CIFAR-10-C and ImageNet-C.

On CIFAR-10-C, OD-TTA achieves the highest average accuracy of 79.5%, demonstrating robust adaptation across diverse
domain shifts. Compared to SAR (68.2%) and MECTA (63.4%), OD-TTA consistently outperforms the baselines, especially
in challenging corruptions such as frost, fog, and snow. The strong performance of OD-TTA across varying domains
highlights its ability to adapt effectively regardless of the sequence of domain changes.

For ImageNet-C, OD-TTA achieves an average accuracy of 32.0%, outperforming Tent and MECTA, and closely competing
with SAR which achieves 37.4%. Notably, OD-TTA shows significant improvements in corruptions like fog (55.9%) and
brightness (72.7%), which are particularly challenging for other baselines.

The domain order impacts the domain shift detection as different types of two adjacent fields will result in different accuracy
changes. Figure 13 illustrates the EMA entropy changes along the data stream in the random domain change sequence. In
this order, the domain shift detection mechanism effectively captures all domain shifts. On average, it requires 510 samples
to detect a domain shift. Specifically, 9 out of 15 shifts are detected within 300 samples, demonstrating the efficiency of the
approach. However, one shift—from JPEG to motion blur—is detected more slowly, requiring 2,941 samples. It is attributed
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Table 9. Adaptation accuracy (%) on a random domain change sequence on Cifar10-C and ImageNet-C.
Dataset Method jpeg motion frost contra. zoom gauss. fog defocus snow shot bright. pixel. elast. impul. glass. Avg. Acc

Cifar10-C

Source 71.2 64.6 76.7 45.2 74.3 31.9 80.1 68.8 83.9 38.4 91.3 28.0 69.1 24.2 45.0 59.5

CoTTA 10.1 10.1 10.0 10.2 10.0 10.0 9.9 10.0 10.1 9.8 10.2 10.1 10.1 10.2 10.1 10.1

Tent 10.9 10.1 10.2 10.9 10.0 10.0 10.9 10.0 10.9 9.8 10.6 10.1 10.0 10.4 10.1 10.3

EATA 17.0 23.2 26.0 32.8 23.6 17.5 31.2 22.8 27.7 18.7 32.0 22.1 18.5 13.9 15.8 22.8

SAR 73.5 75.9 79.7 87.7 82.0 52.5 79.0 79.6 83.6 58.8 91.9 27.8 68.4 43.4 39.6 68.2

MECTA 57.9 71.0 73.4 20.5 73.6 57.0 77.7 72.2 76.2 59.4 82.6 66.1 62.4 49.9 50.8 63.4

Ours 75.6 80.1 85.7 85.4 88.5 71.3 88.3 85.7 87.9 74.2 93.1 75.4 77.0 59.4 65.3 79.5

ImageNet-C

Source 45.4 21.6 33.3 25.4 26.0 18.1 39.0 20.0 31.6 20.0 67.9 12.7 14.0 17.2 10.1 26.8

Tent 0.2 0.3 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1

Tent 0.5 0.7 0.5 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.2 0.2

EATA 0.5 1.1 1.7 0.7 0.9 1.8 0.8 0.5 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.6

SAR 55.5 27.4 41.9 45.3 31.2 29.0 51.8 27.4 45.1 37.9 68.3 51.2 17.0 16.6 15.1 37.4

MECTA 25.7 13.9 20.7 0.2 12.4 5.5 17.7 2.8 10.1 4.2 17.4 7.3 6.3 3.3 2.5 10.0

Ours 51.7 25.2 36.8 12.6 35.5 28.5 55.9 13.3 42.7 30.6 72.7 22.4 9.6 27.4 14.9 32.0

Figure 13. EMA entropy change along data stream on the random sequence. The red dotted lines are where domain shift is detected.
Domains change after every 10,000 samples, as denoted by the changes in the background color.

to the minimal accuracy drop during this transition, as the model’s accuracy decreases only slightly from 75% to 66%. The
use of EMA entropy as a detection signal proves to be an effective and lightweight approach, suitable for real-time TTA in
resource-constrained environments.
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