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Abstract
Meta-Continual Learning (Meta-CL) has emerged1

as a promising approach to minimize manual label-2

ing efforts and system resource requirements by en-3

abling Continual Learning (CL) with limited labeled4

samples. However, while existing methods have5

shown success in image-based tasks, their effective-6

ness remains unexplored for sequential time-series7

data from sensor systems, particularly audio inputs.8

To address this gap, we conduct a comprehensive9

benchmark study evaluating six representative Meta-10

CL approaches using three network architectures on11

five datasets from both image and audio modalities.12

We develop MetaCLBench, an end-to-end Meta-CL13

benchmark framework for edge devices to evaluate14

system overheads and investigate trade-offs among15

performance, computational costs, and memory re-16

quirements across various Meta-CL methods. Our17

results reveal that while many Meta-CL methods en-18

able to learn new classes for both image and audio19

modalities, they impose significant computational20

and memory costs on edge devices. Also, we find21

that pre-training and meta-training procedures based22

on source data before deployment improve Meta-CL23

performance. Finally, to facilitate further research,24

we provide practical guidelines for researchers and25

machine learning practitioners implementing Meta-26

CL on resource-constrained environments and make27

our benchmark framework and tools publicly avail-28

able, enabling fair evaluation across both accuracy29

and system-level metrics.30

1 Introduction31

With the popularization of artificial intelligence, the demand32

for smart home technologies and voiceprint recognition is33

increasing. Consequently, vision and audio-based applica-34

tions such as image classification [Mai et al., 2022], keyword35

spotting (KWS) [Michieli et al., 2023], and environmental36

sound classification (ESC) [Chen et al., 2022] have garnered37

significant attention. However, these applications face a crit-38

ical challenge: deployed models must continually learn and39
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update to accommodate new data and vocabulary as users’ lin- 40

guistic patterns evolve with their environments [Marco et al., 41

2024]. On resource-constrained edge devices, this adaptation 42

process often leads to the Catastrophic Forgetting (CF) prob- 43

lem [McCloskey and Cohen, 1989], where learning new tasks 44

(e.g., words) compromises the model’s ability to recognize 45

previously learned data. 46

Many studies have proposed addressing CF through Con- 47

tinual Learning (CL) methods, which enables learning of new 48

tasks with less forgetting [Shin et al., 2017; Chaudhry et al., 49

2019]. A multitude of CL methods have been proposed to 50

mitigate CF, including rehearsal-based approaches [Chauhan 51

et al., 2020; Pellegrini et al., 2020; Rebuffi et al., 2017], 52

regularization-based methods [Kirkpatrick et al., 2017; Zenke 53

et al., 2017], and parameter isolation-based methods [Hung 54

et al., 2019; Rusu et al., 2016; Yoon et al., 2017]. While 55

rehearsal-based approaches have demonstrated superior ac- 56

curacy in preventing forgetting [Kwon et al., 2021a], they 57

demand substantial labeled data [Parisi et al., 2019] and pose 58

significant memory and computational overheads for resource- 59

constrained devices. 60

To address these limitations, Meta-Continual Learning 61

(Meta-CL) has been introduced. It integrates few-shot learn- 62

ing into CL [Javed and White, 2019; Jerfel et al., 2019] to 63

minimize the burden of manual labeling of conventional CL 64

methods and optimizes resource utilization through algorithm- 65

system co-design [Kwon et al., 2024a]. Despite the benefits 66

of Meta-CL, there are still notable limitations that warrant 67

further investigation. First, the effectiveness of the existing 68

methods, which are typically used for tasks involving images, 69

has not been investigated fully with sequential time series 70

data provided by auditory sensor systems where the modality 71

of the data is significantly different from images [Purwins 72

et al., 2019]. Second, the datasets tested have been rela- 73

tively simple and limited in its variety, consisting of a few 74

image/audio or specially crafted datasets that lack generaliz- 75

ability. Third, many existing studies [Javed and White, 2019; 76

Beaulieu et al., 2020; Lee et al., 2021] primarily focus on accu- 77

racy, neglecting crucial system requirements for edge devices, 78

potentially limiting their practical applicability. 79

In this paper, we address these gaps through a comprehen- 80

sive benchmark study of six representative Meta-CL methods 81

across three network architectures and five diverse datasets 82

spanning image and audio modalities. The employed methods 83



include regularization-based approaches ((1) Online aware84

Meta-Learning (OML) [Javed and White, 2019], (2) A Neuro-85

modulated Meta-Learning Algorithm (ANML) [Beaulieu et86

al., 2020], (3) OML with Attentive Independent Mechanisms87

(OML+AIM), and (4) ANML with AIM (ANML+AIM) [Lee88

et al., 2021]) and rehearsal-based approaches ((5) Latent OML89

and (6) LifeLearner [Kwon et al., 2024a]).90

While these methods have been largely evaluated in com-91

puter vision applications utilizing Convolutional Neural Net-92

work (CNN) architectures, their efficacy in processing au-93

dio data and other architectures remains under-explored.94

Hence, we adopted diverse audio datasets such as Urban-95

Sound8K [Salamon et al., 2014] and ESC50 [Piczak, 2015]96

datasets for Environmental Sound Classification and the97

GSCv2 [Warden, 2018] dataset for keyword spotting (KWS).98

Furthermore, we incorporated two commonly used image99

datasets such as MiniImageNet [Vinyals et al., 2016] and100

CIFAR-100 [Krizhevsky et al., 2009] to compare the effective-101

ness of Meta-CL on image datasets versus audio datasets.102

Previous studies [Beaulieu et al., 2020; Lee et al., 2021;103

Kwon et al., 2024a] have exclusively evaluated simple three-104

layer CNN architectures for Meta-CL. To bridge this research105

gap, we incorporated MobileNet-based architecture, YAM-106

Net [Howard et al., 2017], capable of recognizing audio107

events. We also employed Vision Transformers (ViT) archi-108

tecture [Dosovitskiy et al., 2020] for images to conduct a109

comparative study.110

Overall, we make the following key contributions.111

• Comprehensive Evaluation Framework (Section 3):112

We developed MetaCLBench, an end-to-end benchmark113

framework that incorporates diverse audio (GSCV2, Ur-114

banSound8K, ESC50) and visual datasets (CIFAR100,115

MiniImageNet), enabling thorough evaluation across dif-116

ferent data modalities. The framework assesses both117

accuracy and system-level metrics, including computa-118

tional efficiency, memory and energy consumption. Also,119

our evaluation covers multiple architectures of varying120

complexity, offering a robust understanding of Meta-CL121

performance across different computational scenarios.122

• Empirical Insights (Section 4): We present comprehen-123

sive findings demonstrating the effectiveness of Meta-CL124

methods across both image and audio domains. Our125

analysis quantifies the computational and memory de-126

mands on edge devices (Section 4.1), while revealing that127

pre-training and meta-training procedures significantly128

enhance Meta-CL performance during deployment (Sec-129

tion 4.2). Notably, we find that well-tuned basic 3-layer130

CNN architecture with proper pre-training can outper-131

form more sophisticated models such as ViT and YAM-132

Net (Table 1) under difficult Meta-CL setups, challenging133

conventional assumptions about model complexity.134

• Open Resources and Practical Guidelines (Section 5):135

By implementing MetaCLBench on edge devices, we pro-136

vide realistic insights and practical guidelines specifically137

tailored for resource-constrained devices. Furthermore,138

we plan to release our benchmark framework and evalua-139

tion tools1 to enable fair and comprehensive assessment 140

of both accuracy and system-level performance metrics. 141

This will facilitate reproducible research and accelerate 142

the development of practical Meta-CL solutions for real- 143

world applications. 144

2 Related Work 145

Continual Learning: CL aims to assimilate new knowl- 146

edge in dynamically evolving input domains through pro- 147

gressive acquisition [Mai et al., 2022; Wang et al., 2024]. 148

When algorithms are trained sequentially, the new learn- 149

ing will interfere with previous established weights, lead- 150

ing to CF of the previous learning [McCloskey and Co- 151

hen, 1989]. Current CL approaches to the CF challenge 152

can be divided into two categories based on task informa- 153

tion management. The first approach incorporates regu- 154

larization terms into the loss function to facilitate knowl- 155

edge of old and new models, thereby preserving previously 156

learned knowledge [Rannen et al., 2017; Li and Hoiem, 2018; 157

Rodríguez et al., 2021; Ahn et al., 2019]. The second 158

approach involves either original or pseudo-samples from 159

previous tasks during new task training [Shin et al., 2017; 160

Rolnick et al., 2019; Chaudhry et al., 2019]. 161

Meta Continual Learning: Meta-CL updates the model in 162

the outer loop using learned random samples and optimizes it 163

in the inner loop with a few samples before passing it to the 164

outer loop [Jerfel et al., 2019]. Previous research on Meta-CL 165

has primarily concentrated on image recognition applications. 166

Online-aware Meta-Learning (OML) [Javed and White, 2019] 167

and A Neuromodulated Meta-Learning (ANML) [Beaulieu 168

et al., 2020] both demonstrated high CL performance on the 169

Omniglot dataset [Lake et al., 2015]. Based on these ap- 170

proaches, state-of-the-art (SOTA) Meta-CL incorporated the 171

Attentive Independent Mechanisms (AIM) module, which 172

can independently acquire new knowledge to enhance model 173

performance [Lee et al., 2021]. However, due to its high 174

processing cost, using Meta-CL is challenging on low-end 175

edge devices [Kwon et al., 2024a]. LifeLearner addresses 176

these limitations by integrating meta-learning, rehearsal mech- 177

anisms, and resource-efficient compression, making it suitable 178

for deploying Meta-CL applications on resource-constrained 179

devices [Kwon et al., 2024a]. 180

Continual Learning for Image and Audio Applications: 181

CL has remarkable capabilities in sensing applications, in- 182

cluding action recognition, audio sensing, and speech recogni- 183

tion [Jha et al., 2021; Kwon et al., 2021a]. Its ability to update 184

models based on continuous data streams makes it particu- 185

larly valuable for mobile devices processing speech and image 186

data. Researchers have successfully applied CL to speech and 187

emotion recognition [Thuseethan et al., 2021]. CL systems 188

integrated into edge devices with audio and microphones con- 189

tinually learn from ambient human voices and environmental 190

sounds to improve recognition accuracy [Kwon et al., 2021b]. 191

In image recognition, CL facilitates applications such as food 192

recognition [He and Zhu, 2021], where systems must con- 193

tinuously learn from new instances to enhance recognition 194

accuracy. 195

1https://github.com/theyoungkwon/MetaCLBench

https://github.com/theyoungkwon/MetaCLBench


Figure 1: The framework overview. Testing trade-offs between
performance and system resources across three devices with five
datasets and six Meta-CL methods using three model architectures

In contrast to these real-world applications, our study ex-196

plores CL’s capability to optimize the trade-off between per-197

formance and system resources on resource-constrained edge198

devices. We comprehensively evaluate five Meta-CL methods199

across image and audio domains using various architectures200

ranging from 3-layer CNN, YAMNet, to ViT, accounting for201

the unique characteristics of each modality and architecture.202

3 Benchmark Framework203

3.1 Continual Learning Task204

Problem Formulation: CL addresses the challenge of learn-205

ing new tasks without forgetting previously learned ones.206

Given a sequence of tasks S, the objective is to maintain robust207

performance across all tasks S1....n. Our evaluation frame-208

work encompasses (T (Task), S(Sequence), D(Datasets)),209

where each task represents a distinct sound class. Each subse-210

quent task Sn is derived from the historical training records211

of the most recent sets Sn−1, Sn−2...Sn−m of the employed212

audio and image datasets.213

Meta-Learning is conducted in both the inner and outer214

loops, enabling the training of each inner loop round through215

the outer loop. Each inner loop iteration is performing a com-216

plete learning process, evaluating both the acquisition of new217

tasks and the retention of previously learned ones. The meta-218

loss gradient (comprising newly learned errors and errors from219

random sampling of the dataset) propagates back to update the220

initial parameters. This process continues iteratively as new221

tasks are incorporated. By constraining each inner loop to a222

single new task while continuously undergoes meta-training,223

it mitigates CF and optimizing computational efficiency.224

Our Framework Overview: Figure 1 shows our experi-225

mental framework, MetaCLBench, designed to evaluate the226

performance and resource trade-offs across multiple dimen-227

sions: three devices, five datasets, six Meta-CL methods, and228

three architectures. MetaCLBench extends Meta-CL by im-229

plementing a comprehensive evaluation system that spans230

multiple modalities and practical considerations. By com-231

bining both visual and audio datasets, we provide thorough232

insights into Meta-CL performance across diverse data types.233

We conduct a detailed system-level analysis of computational234

efficiency, memory usage, and energy consumption, partic-235

Figure 2: The illustration of the Meta-CL methods evaluated in our
benchmark framework.

ularly on resource-constrained edge devices for real-world 236

applications. Overall, our framework evaluates six established 237

Meta-CL methods across three network architectures of vary- 238

ing complexity, creating a robust benchmark framework that 239

assesses both theoretical capabilities and practical constraints. 240

We now explain each of the components of our framework in 241

the following subsections. 242

3.2 Meta-CL Methods 243

Figure 2 presents six distinct Meta-CL methods: Online 244

aware Meta-Learning (OML), OML with Attentive Indepen- 245

dent Mechanisms (OML+AIM), A Neuromodulated Meta- 246

Learning Algorithm (ANML), ANML+AIM, and LifeLearner. 247

The following sections detail each method. 248

OML [Javed and White, 2019] continuously optimizes 249

representations during online updates to quickly acquire pre- 250

dictions for new tasks, facilitating seamless and efficient CL. 251

This approach uses CF as signals to justify the use of storage 252

space for accommodating new tasks. The OML can accom- 253

plish CL in more than 200 consecutive classes. It is an online 254

updating method that constantly learns representations and of- 255

ten outperforms rehearsal-based continuous learning methods. 256

ANML [Beaulieu et al., 2020]: This is an approach in- 257

spired by the neuromodulation process in the brain. This 258

method accomplishes selective activation (forward pass) and 259

selective plasticity (backward pass) in DNNs by meta-learning 260

through a CL process within the prediction network (fφP ). 261

Optimizing activation timing by controlling the activation of 262

a predictive model based on input conditions enhances con- 263

tinual learning. It is often reported to be superior to OML, 264

as it can be optimized to reduce both forward and backward 265

interference. 266

OML+AIM [Lee et al., 2021]: This is a Meta-CL approach 267

that integrates Attentive Independent Mechanisms (AIM), 268



which is a modular component into OML framework. AIM269

increases the speed of learning a new task by selecting out the270

mechanism that best explains the representation of the inner271

loop to activate.272

ANML+AIM [Lee et al., 2021]: This is a Meta-CL ap-273

proach that incorporates AIM into ANML framework. The274

accuracy of SOTA Meta-CL continues to improve beyond the275

performance of the previous three approaches by integrating276

AIM into the existing CL framework.277

LifeLearner [Kwon et al., 2024a]: This module is based278

on ANML and combines both lossy and lossless compression279

to achieve high compression rates and minimize footprint. The280

LifeLearner approach not only achieves optimal CL efficiency281

but also significantly reduces energy consumption and latency282

compared to the SOTA. And it achieves efficient learning even283

on resource-constrained edge devices.284

Latent OML: This module is based on OML and incorpo-285

rates the rehearsal strategy from LifeLearner to achieve high286

Meta-CL accuracy. It is used to evaluate advanced architec-287

tures (YAMNet and ViT).288

3.3 Datasets289

Google Speech Commands V2 (GSCV2) [Warden, 2018] is290

a massive database of one-second voice clips of 30 short words291

consisting of a solitary spoken English word or ambient noise292

divided into 35 classes with 105,829 clips. These clips are293

derived from a limited number of commands and are spoken by294

various speakers. Each class has 2,424 input data for training295

and 314 for testing, with 25 classes allocated for meta-training296

and the remaining 10 for meta-testing. Then, up to 30 samples297

are provided for each class during meta-testing.298

Urbansound8k is a comprehensive collection for environ-299

ment sound classification (ESC) applications comprising 8,732300

labeled sounds that are no more than four seconds [Salamon et301

al., 2014]. This single-labeled dataset is categorized into ten302

classes from the taxonomy in real-world settings, including303

children playing sound, street music, gunshots, etc. Referring304

to previous studies [Su et al., 2019], indicate that four fea-305

tures in each audio clip were extracted and resampled to 22306

kHz. Among the ten classes, half of them are allocated for307

meta-training, while the other half are specifically assigned308

for meta-testing. Up to 30 samples are given for each class309

during the meta-testing. Based on the first three seconds of310

each audio segment, the input to the audio is 128 (number of311

frames) × 85 (size of the set of four features).312

ESC50 is a smaller volume collection consisting of 2,000313

environment sounds in 5-second segments [Piczak, 2015].314

This single-labeled dataset is categorized into 50 classes and315

divided into five groups: animals, natural soundscapes, human316

sound without speech, domestic sounds and urban noises. Out317

of the 50 classes. 30 are designated for meta-training and318

the remaining 20 for meta-testing. Then, up to 30 samples319

are given for each class during meta-testing. As part of the320

preprocessing procedure, we resampled the ESC50 samples321

to 32kHz and generated an input with dimensions of 157322

(number of frames) × 64 (features) [Chen et al., 2022; Pons et323

al., 2019].324

CIFAR-100 consists of 60,000 images distributed across325

100 classes and is widely used for training and assessing var-326

ious machine learning algorithms in tasks related to image 327

classification [Krizhevsky et al., 2009]. Each class contains 328

500 photographs for training and 100 images for testing. Of 329

the 100 classes, 70 are designated for meta-training and 30 for 330

meta-testing. In both phases, 30 random training images per 331

class are utilized. For the meta-testing phase, 900 samples are 332

utilized during meta-testing to carry out CL. 333

MiniImageNet is excerpted from the Imagenet dataset and 334

is utilized in few-shot learning research [Vinyals et al., 2016]. 335

Based on the previous research, the MiniImageNet dataset is 336

composed of 64 classes designated for meta-training and 20 337

for meta-testing. Each class offers 540 images for training and 338

60 for testing. Moreover, a total of 600 samples are available 339

during the meta-testing phase. 340

3.4 Model Architecture 341

We augmented the 3-layer CNN architecture previously em- 342

ployed in CL studies by incorporating the YAMNet network 343

architecture with pre-training. In addition to assessing YAM- 344

Net as a model for the speech domain with pre-training, we 345

also evaluated the ViT, a transformer model that integrates a 346

pre-trained model used for image classification by segmenting 347

the image to a fixed size for input to the transformer encoder. 348

3-layer Architecture: The methods depicted in Fig. 2 con- 349

sist of feature extractors and classifiers. The feature extractor 350

transmits the learned features to the AIM and the compression 351

modules, followed by classification. The fφW added to the 352

AIM module components can be used to minimize forgetting 353

and learn new categories efficiently. In the 3-layer architecture, 354

the feature extractor for OML and OML+AIM incorporates 355

fφ, which is a 6-layer CNN with 112 channels, and the classi- 356

fier has two fully-connected layers. And the LifeLearner and 357

ANML+AIM share the same natural structure. The feature 358

extractor includes a neuromodulatory network (fφNM ) and a 359

prediction network (fφP ), which is a 3-layer CNN with 112 360

channels. The classifier consists of a single fully-connected 361

layer with 256 channels. 362

YAMNet [Howard et al., 2017] employs the MobileNetV1, 363

which features a depthwise separable convolution architecture 364

designed to decrease model size and latency and a full convo- 365

lution on the first layer. The depthwise separable convolution 366

comprises a deep convolution responsible for filtering and a 367

pointwise convolution used 1× 1 convolution responsible for 368

combining features, effectively mixing information from all 369

output channels in the deep convolution step. MobileNetV1 370

consists of 28 layers, with each layer being downsampled 371

through strided convolution. Additionally, MobileNets intro- 372

duces two hyperparameters, a width multiplier and a resolution 373

multiplier, which facilitate the balance latency and accuracy. 374

ViT [Dosovitskiy et al., 2020] embodies a hybrid archi- 375

tecture. Since ViT only has a Multilayer Perceptron (MLP) 376

layer with localization and translation equivalence, the image- 377

specific generalization bias of ViT is much smaller than that 378

of CNN. The same five methodologies deployed in the 3-layer 379

architecture have been adapted for use with ViT. ViT begins 380

by partitioning an image into patches; these patches, extracted 381

from the CNN feature maps, serve as alternative input se- 382

quences for the model. 383



3.5 System Implementation384

The implementation of our benchmark framework, Meta-385

CLBench, consists of two stages. We developed the first stage,386

pre-training and meta-training, of Meta CL methods on a387

Linux server to initialize and optimize neural weights in order388

to enable fast adaptation during deployment scenarios with a389

few samples. After that, we implemented the second stage,390

meta-testing (i.e., actual deployment setup), on our target de-391

vices: (1) embedded and mobile systems such as Jetson Nano392

and Raspberry Pi 3B+ and (2) a severely resource-constrained393

IoT device like Raspberry Pi Zero 2. In addition, for methods394

that utilize hardware-friendly optimization (e.g., LifeLearner),395

we also adopt their optimization techniques in our framework.396

Specifically, MetaCLBench incorporates hardware-friendly397

8-bit integer arithmetic [Jacob et al., 2018] which reduces398

the precision of weights/activations of the model from 32-bit399

floats to 8-bit integers, increasing the computation throughput400

and minimizing latency and energy. MetaCLBench uses the401

scalar quantization scheme [Jacob et al., 2018] to minimize402

the information loss in quantization. Also, the QNNPACK403

backend engine is used to execute the quantized model on the404

embedded devices.405

Embedded Devices: MetaCLBench employs three diverse406

edge devices: (1) Jetson Nano, (2) Raspberry Pi 3B+, and407

(3) Raspberry Pi Zero 2 which are equipped with a quad-core408

ARM processor and 4 GB, 1 GB, 0.5 GB of RAM, respectively.409

In addition, it should be noted that the available memory on the410

Jetson Nano, Raspberry Pi 3B+, and Pi Zero 2 during idle time411

is about 1.7 GB, 600 MB, and 250 MB. This is because some412

of the memory is already being used by background processes,413

concurrent apps, and the operating system. Hence, we allocate414

an additional 1GB of swap space, enabling the execution of415

memory-intensive Meta-CL methods such as ANML+AIM416

and OML+AIM. Our software stack includes Faiss [Johnson et417

al., 2019] and PyTorch 1.13 for meta-training and meta-testing418

stages.419

3.6 Experimental Setup420

Training Detail: We adopt a pre-training procedure, simi-421

lar to prior works [Hu et al., 2022; Yosinski et al., 2014].422

For the advanced model architectures such as ViT and YAM-423

Net, there exist pre-trained model weights, thus we utilize424

them directly similar to [Hu et al., 2022]. Then, for the CNN425

architecture, we pre-train the CNN model with a sufficient426

number of epochs (i.e., until the validation loss converges),427

which is consistent with conventional transfer learning for428

DNNs [Yosinski et al., 2014]. Consistent with prior meta-429

training research [Lee et al., 2021; Kwon et al., 2024a], we430

employed a batch size of 1 for the inner-loop updates and 64431

for the outer-loop updates across 20,000 steps to ensure the432

accuracy of our results. To obtain a meta-trained model with433

the highest possible validation set accuracy, we tested with434

various learning rates required for both the inner and outer435

loops. Consequently, we established the learning rate for the436

inner loop (α) was set to 0.001, and the learning rate for the437

outer loop (β) was also set to 0.001 for all datasets. In the438

meta-testing phase, we assessed ten distinct learning rates for439

each method and reported the best accuracy. To evaluate the440

precision of rehearsal-based methods, we experimented with441

batch sizes of 8 and 16 and observed a minimal performance 442

difference depending on the batch sizes. We selected a batch 443

size of 8 as it requires less memory than larger batch sizes. 444

We chose to use ANML with CNN architectures and OML 445

with more advanced models like ViT and YAMNet. Our pre- 446

liminary tests revealed minimal differences between ANML 447

and OML within the same architecture, with ANML slightly 448

outperforming OML in terms of accuracy. Due to this marginal 449

difference, we focused on ANML for CNNs to streamline 450

the analysis. For more complex architectures like ViT and 451

YAMNet, we opted for OML, as ANML introduces additional 452

computational overhead due to an extra layer. Our study con- 453

centrated on the performance of methods within specific ar- 454

chitectures rather than comparing ANML and OML across 455

all architectures. This streamlined approach allowed us to 456

present a clearer analysis without redundant testing across 457

combinations. 458

Evaluation Metrics: Following [Beaulieu et al., 2020], 459

this study focuses on the accuracy of unseen samples across 460

new categories in CL. We measure the end-to-end latency, 461

energy consumption, and peak memory by deploying vari- 462

ous Meta-CL methods using MetaCLBench on edge devices: 463

Jetson Nano, Raspberry Pi 3B+, Raspberry Pi Zero 2. Specifi- 464

cally, we measure system performance metrics by continually 465

learning all given classes for deployed DNNs on embedded de- 466

vices. Peak memory includes: (1) model memory for updated 467

weights, (2) optimizer memory for gradients and momentum, 468

(3) activations memory for intermediate outputs during weight 469

updates, and (4) rehearsal samples. To measure end-to-end 470

latency and energy consumption, we account for the time and 471

energy required to: (1) load the model and (2) perform Meta- 472

CL using all available samples (e.g., 30) across all classes (e.g., 473

30 for CIFAR-100 and 10 for GSCv2). Energy consumption 474

is measured by monitoring the power consumption of the edge 475

device using a YOTINO USB power meter. We derive the 476

energy consumption using the equation (Energy = Power x 477

Time). 478

4 Results & Findings 479

This section presents comprehensive evaluation results and 480

findings from MetaCLBench. Due to page constraints, we 481

present results from two datasets in the main text, with com- 482

plete results available in the Appendix. 483

4.1 Main Results 484

Previous research [Kwon et al., 2024a; Holla et al., 2020], 485

has shown that OML algorithms achieve lower accuracy than 486

ANML algorithms when using 3-layer CNN architectures. 487

Therefore, we focused our experimental investigation exclu- 488

sively on ANML for CNN-based evaluations. For advanced 489

models like YAMNet and ViT, we prioritized OML evaluation 490

due to their inherent pre-training components, which elimi- 491

nate the need for additional pre-training through ANML or 492

the AIM module—additions that neither significantly improve 493

accuracy nor justify their computational cost. 494

Accuracy. We evaluated the test accuracy of six Meta-CL 495

approaches across five datasets against a baseline model. Ora- 496

cle models (Oracle ANML for CNN, Oracle OML for YAM- 497

Net and ViT) establish the upper accuracy bounds and serve as 498



Table 1: Performance and computational costs, memory footprint of
six representative Meta-CL methods using three network architec-
tures on five datasets of image and audio domains. OOM indicates
an out-of-memory issue.

CNN

Dataset Method Accuracy Memory Latency Energy
Pre-trained 0.258 474.5MB 1,198s 5.5KJ
ANML 0.327 474.5MB 1,152s 5.3KJ

Mini ANML+AIM 0.331 1,562 MB OOM OOM
ImageNet OML+AIM 0.187 1,051 MB 1,434s 6.5KJ

Raw ANML 0.429 897.1 MB 185,610s 810KJ
Oracle ANML 0.438 475.0 MB 3.414s 15.7KJ
LifeLearner 0.433 136.7 MB 1,236s 6.17kJ

Pre-trained 0.182 1,382 MB 302s 1.6KJ
ANML 0.596 1,382 MB 305s 1.6KJ

Urban ANML+AIM 0.439 2,593 MB OOM OOM
Sound8K OML+AIM 0.385 2,648 MB OOM OOM

Raw ANML 0.667 1,456 MB 60,120s 279KJ
Oracle ANML 0.710 1,384 MB 916s 4.5KJ
LifeLearner 0.650 496 MB 320s 1.7KJ

ViT

Dataset Method Accuracy Memory Latency Energy
Pre-trained 0.234 336.6 MB 2,056s 11.2KJ

Mini OML 0.255 336.6 MB 2,203s 11.4KJ
ImageNet Raw OML 0.454 1,334 MB 301,456s 1150KJ

Oracle OML 0.512 337.7 MB 6,301s 31KJ
Latent OML 0.376 336.6 MB 2,250s 13KJ

YAMNet

Pre-trained 0.186 39.2 MB 912s 5.4KJ
Urban OML 0.262 39.2 MB 910s 5.4KJ
Sound8K Raw OML 0.595 139.3 MB 120,965s 550KJ

Oracle OML 0.729 42.4 MB 2,501s 21.1KJ
Latent OML 0.442 39.2 MB 910s 1.6KJ

benchmarks, as they are trained on all classes simultaneously499

in an i.i.d. manner, following traditional offline DNN training.500

By comparing Meta-CL methods against Oracle models, we501

demonstrate the trade-offs between Meta-CL approaches and502

ideal scenarios where all data is available initially, highlighting503

our methods’ efficiency under practical constraints. The results504

in Table 1 show that models using only pre-trained weights505

("Pre-trained") achieve lower accuracy, averaging 22.18% and506

13.8% across the datasets for Convolutional Neural Networks507

(CNNs) and advanced architectures(YAMNet and ViT). This508

result indicates that traditional transfer learning fails to address509

few-shot learning challenges. In CNN architecture, baseline510

ANML improved upon the pre-trained-only approach with a511

16.7% average accuracy gain. The AIM enhancement further512

increased accuracy by 2.54%. However, these improvements513

remained below Oracle and LifeLearner methods by 15.92%.514

The constrained sample size during the meta-testing phase515

poses a challenge to attaining high accuracy, even considering516

the theoretical upper limit.517

Peak Memory Footprint. We conducted measurements to518

ascertain the maximum RAM requirements forbackpropaga-519

tion execution and rehearsal samples storage. The backpropa-520

gation memory is divided into three parts: (1) model memory,521

which is responsible for storing model parameters; (2) opti-522

mizer memory, which is responsible for storing gradient and523

momentum vectors; (3) activation memory, which is responsi-524

ble for storing intermediate activations that are reused during525

backpropagation. Table 1 presents the peak memory usage 526

across various methodologies. First, we found that although 527

AIM enhances accuracy, it increases peak usage due to addi- 528

tional parameters and activation storage requirements during 529

training. The memory demands 1,562 MB for MiniImageNet 530

and 2,648 MB for UrbanSound8K, significantly exceeding 531

the RAM capacity of embedded devices such as the Pi 3B+ 532

and resulting out-of-memory (OOM) problems. Consequently, 533

it becomes challenging to utilize it in edge devices. While 534

OML, ANML, Oracle, Pre-trained, and LifeLearner demon- 535

strate lower memory requirements, Pre-trained and ANML 536

are less accurate. LifeLearner emerges as the optimal solu- 537

tion, requiring only 136-496 MB while maintaining accuracy 538

comparable to Oracle through high compression rates. This 539

efficiency is achieved through latent replay, which reduces 540

activation memory and overall memory footprint, making it 541

particularly suitable for resource-constrained environments. 542

In contrast, advanced architectures like ViT and YAMNet de- 543

mand greater computational resources due to high-dimensional 544

data processing and additional layer training requirements. 545

End-to-end Latency & Energy Consumption. Table 1 546

also presents the operational efficiency of Meta-CL methods 547

implemented on Raspberry Pi 3B+, focusing on end-to-end 548

latency and energy consumption. The end-to-end latency com- 549

prises four components: model loading (5%), inference (30%), 550

backpropagation (61%), and data processing overhead (4%). 551

First, we measured the end-to-end latency of CL methods 552

on the Raspberry Pi 3B+ across all classes (30 samples per 553

class). LifeLearner achieved fast end-to-end latency. Oracle 554

exhibited higher training latency due to i.i.d. Training over 555

multiple epochs until it converges. AIM’s implementation 556

of attention mechanism selection during backpropagation in- 557

creased computational overhead. LifeLearner reduces training 558

and memory latency through latent replay and model freez- 559

ing. Due to the large amount of memory required by the AIM 560

series, crashes occurred several times during the test due to 561

memory exhaustion. 562

To establish generalizability, we extended our evaluation to 563

diverse edge devices with varying computational capabilities 564

(Jetson Nano with enhanced specifications and Pi Zero 2 with 565

reduced capacity). The table 2 below shows the end-to-end 566

latency and energy consumption results across these three 567

edge devices, confirming that LifeLearner achieves a 7.5-fold 568

reduction in latency compared to Oracle. 569

4.2 Analysis and Discussion 570

Effectiveness of Pre-training. We examine the effectiveness 571

of pre-training on the performance of Meta-CL methods. Our 572

evaluation across five datasets without pre-training reveals 573

varying performance levels: while the two image datasets and 574

GSCv2 demonstrated satisfactory accuracy, Urbansound and 575

ESC50 showed suboptimal performance. Following the ap- 576

proach used in advanced models, we implemented pre-training 577

before meta-training for each method. As shown in Figure 3a, 578

the incorporation of pre-training significantly enhanced model 579

performance. Notably, Meta-CL methods achieved an aver- 580

age performance improvement of 13.98% on the Urbansound 581

and ESC50 datasets after pre-training. Our analysis revealed 582

that CNNs exhibited considerable performance degradation 583



Table 2: End-to-end latency and energy consumption results of run-
ning different Meta-CL methods on three different edge devices

Device Method Latency Energy
Pretrained 71s 0.32kJ

Raspberry ANML 71s 0.32kJ
Pi 3B+ Oracle ANML 570s 2.60kJ

LifeLearner 76s 0.35kJ

Pretrained 79s 0.36kJ
Jetson ANML 79s 0.36kJ
Nano Oracle ANML 633s 2.00kJ

LifeLearner 84s 0.39kJ

Pretrained 74s 0.33kJ
Raspberry ANML 75s 0.33kJ
Pi Zero 2 Oracle ANML 601s 2.64kJ

LifeLearner 80s 0.35kJ

(a) With and Without pre-training
on CNN

(b) Number of replay epochs

Figure 3: The analysis of Meta-CL Methods for the audio datasets

when meta-training was conducted without pre-training. Given584

that advanced models inherently contain pre-trained weights,585

additional pre-training did not yield substantial accuracy im-586

provements. These findings establish pre-training as a crucial587

step in optimizing model accuracy and demonstrate that the588

sequential implementation of pre-training followed by meta-589

training is essential for achieving superior performance across590

all methods.591

The Number of Replay Epochs. We investigated the re-592

lationship between replay frequency and accuracy, acknowl-593

edging that increased replays correspond to higher latency and594

energy consumption. As illustrated in Figure 3b, Oracle OML595

requires more than five replays to achieve high accuracy levels,596

resulting in increased energy consumption during training. In597

contrast, Latent OML demonstrates superior efficiency, achiev-598

ing comparable accuracy with only one or two replays, thus599

reducing system overhead. Within the same dataset, Latent600

OML’s performance after five replays approximates that of601

Oracle OML after ten replays.602

Multi Compression Module. In CNN architectures,603

ANML with AIM demonstrates substantial accuracy improve-604

ments (from 26.0% to 34.6% on CIFAR100), albeit at the605

cost of increased memory requirements (from 39.69MB to606

1,093MB). LifeLearner presents an optimal balance between607

accuracy and memory utilization in resource-constrained en-608

vironments. The integration of AIM, while beneficial for609

accuracy, introduces significant computational overhead, par-610

ticularly in Raw ANML implementations (11,424s latency, 611

52.5KJ energy consumption on CIFAR100). Oracle ANML 612

provides a balanced compromise between performance en- 613

hancement and resource efficiency. 614

Vision Transformer (ViT) and YAMNet architectures ex- 615

hibit analogous performance-resource tradeoffs. ViT imple- 616

mentations with OML and AIM show improved accuracy but 617

incur substantial computational costs (22,968s latency, 103KJ 618

energy consumption on CIFAR100). Similarly, YAMNet with 619

AIM achieves superior accuracy (from 42.9% to 71.0% on 620

GSCv2) while requiring increased memory utilization (from 621

10.16MB to 608.2MB). Pretrained YAMNet models demon- 622

strate superior resource efficiency metrics. 623

5 Practical Guidelines 624

Our extensive empirical analysis provides evidence-based 625

guidelines for researchers and practitioners implementing 626

Meta-CL on edge devices. Although this investigation fo- 627

cuses on specific Meta-CL methods and may not encompass 628

all learning approaches, our results and findings show consis- 629

tent patterns across different architectures and datasets, which 630

lead to the following key guidelines. 631

Resource-Aware Method Selection. The choice of Meta- 632

CL implementation should be guided by available system 633

resources. For systems with adequate storage capacity, Life- 634

Learner or Latent OML implementations provide optimal ac- 635

curacy across datasets. Resource-constrained environments 636

benefit from Raw ANML or Raw OML methods combined 637

with hardware-friendly optimizations. In severely limited 638

environments, efficient integration of the quantization and 639

compression module of LifeLearner with advanced models 640

(YAMNet and ViT) would offer a viable compromise between 641

computational efficiency and storage requirements. 642

Edge Deployment Considerations. Latent methods con- 643

sistently demonstrate superior performance across image and 644

audio datasets, balancing accuracy with resource efficiency. 645

This characteristic positions these methods as particularly ad- 646

vantageous for IoT applications, facilitating real-time category 647

integration, efficient personalized processing, and privacy- 648

preserving local computation without additional communica- 649

tion overhead. 650

6 Conclusion 651

In this paper, we investigate how to solve the CF problem 652

based on five representative image and audio datasets (i.e., 653

CIFAR100, MiniImageNet, GSCV2, UrbanSound8K, and 654

ESC50) using three different network architectures with differ- 655

ent complexities using six well-known Meta-CL methods. We 656

also created a comprehensive Meta-CL benchmark framework 657

on an edge device to assess the system overheads occurring on 658

the device and examine the trade-offs between performance, 659

computational costs, memory usage, and storage of different 660

Meta-CL approaches. We first found that the combination 661

of pre-training plus meta-training plus evaluation maximizes 662

performance. Advanced methods (YAMNet and ViT) already 663

include pre-trained, so the extra pre-training will not affect the 664

results much. 665
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A Detailed Benchmark Framework 1072

This section provides additional information on our MetaCLBench framework. 1073

A.1 Additional Baselines & Methods 1074

Pretrained: To initialize the model weights, this baseline performs conventional deep neural network (DNN) training without 1075

meta-learning procedure and/or Meta-CL methods during the meta-training phase. After that, it finetunes the model weights with 1076

a few samples during a meta-testing phase, similar to other Meta-CL methods. As Pretrained typically shows low performance, 1077

it serves as the lower bound in our evaluation. Also, a comparison between this baseline and other methods can reveal the 1078

effectiveness of the meta-learning procedure in a CL task. 1079

Oracle: This baseline represents the case where it has access to all the classes at once in an i.i.d. fashion. Also, we assume 1080

that Oracle would perform DNN training for multiple epochs until the model converges. As a result, Oracle often shows superior 1081

accuracy, and thus its accuracy represents the upper bound of our evaluation. 1082

OML [Javed and White, 2019]: This method constantly optimizes representations during online updates to quickly acquire 1083

predictions for new tasks, facilitating seamless and efficient CL. This approach uses CF as signals to justify the use of storage 1084

space to accommodate new tasks. The OML can accomplish CL in more than 200 consecutive classes. It is an online 1085

updating method that constantly learns representations and often outperforms rehearsal-based continuous learning methods. 1086

The fundamental difference between OML and MAML-Rep lies in their approach to updates. OML employs a single data 1087

point for each update, while MAML-Rep utilizes an entire batch. By adopting this method, OML is able to more accurately 1088

consider the impact of online learning, including the phenomenon of CF. The objective of OML is to implement the computation 1089

graph for live updates and to discover representations that maintain high accuracy even with ongoing changes. It acquires sparse 1090

representations without any inactive neurons, surpassing traditional and rehearsal-based strategies for ongoing learning. The 1091

technique entails meta-training, with an emphasis on avoiding interference and facilitating rapid adaption during online updates. 1092

ANML [Beaulieu et al., 2020]: This is an approach inspired by the neuromodulation process in the brain. This method 1093

accomplishes selective activation (forward pass) and selective plasticity (backward pass) in DNNs by meta-learning through 1094

a CL process within the prediction network. Optimizing activation timing by controlling the activation of a predictive model 1095

based on input conditions enhances CL. It is often reported to be superior to OML, as it can be optimized to reduce both forward 1096

and backward interference. ANML’s architecture comprises two parallel networks: the NM network governs the activations 1097

and plasticity of the PLN. ANML employs a unique method where it adjusts specific components of the PLN based on whether 1098

it is in the meta-training or meta-testing phase, distinguishing it from conventional methods. The results of the experiments 1099

demonstrate that ANML surpasses other approaches by a large margin. It maintains a high level of accuracy even when faced 1100

with 600 consecutive tasks. This is attributed to its capability to generate sparse yet powerful representations and effectively 1101

manage sequential learning without erasing previously acquired knowledge. 1102

OML+AIM [Lee et al., 2021]: This is a Meta-CL approach that integrates Attentive Independent Mechanisms (AIM), which 1103

is a modular component of the OML framework. AIM increases the speed of learning a new task by selecting out the mechanism 1104

that best explains the representation of the inner loop to activate. AIM is comprised of a collection of autonomous mechanisms, 1105

with each mechanism being defined by its own unique set of parameters. Each mechanism functions as an autonomous specialist 1106

that cooperates with other specialists to solve assignments. AIM is situated between the feature extractor and the output classifier 1107

in a deep neural network. This approach incorporates higher-level data representation and employs rapidly updated weights 1108

within the inner loop of a meta-learning process. During the training process, AIM mechanisms engage in competition and focus 1109

on input representations through cross-attention. This allows them to select a limited number of mechanisms for task-specific 1110

learning. 1111

ANML+AIM [Lee et al., 2021]: This is a Meta-CL approach that incorporates AIM into the ANML framework. The accuracy 1112

of SOTA Meta-CL continues to improve beyond the performance of the previous three approaches by integrating AIM into 1113

the existing CL framework. AIM is positioned following a feature extractor and preceding an output classifier, allowing it 1114

to effectively process intricate representations. AIM, in contrast to RIMs, does not employ LSTM-based temporal modeling, 1115

rendering it a static module. AIM’s processes engage in a targeted manner according to the relevance of the information, which 1116

helps to create a concise representation and enhance the ability to adapt to new activities while reducing the risk of CF. It has 1117

demonstrated substantial enhancements in accuracy for tasks involving few-shot and ongoing learning, surpassing existing 1118

approaches without increasing the number of parameters. 1119

Lifelearner [Kwon et al., 2024a]: This module is based on ANML and combines both lossy and lossless compression to 1120

achieve high compression rates and minimize footprint. The Lifelearner approach not only achieves optimal CL efficiency but 1121

also significantly reduces energy consumption and latency compared to the SOTA. LifeLearner consists of two distinct phases: 1122

meta-training, which takes place on a server to establish a strong initial weight configuration, and meta-testing, which occurs on 1123

devices to continuously acquire knowledge of new classes while retaining information from prior ones. The main characteristics 1124

consist of an enhanced compression module that minimizes memory consumption, a feature extractor that remains unchanged, 1125

and a classifier that is constantly updated through learning. And it achieves efficient learning even on resource-constrained edge 1126

devices. 1127

Latent OML: This module is based on OML and incorporates the Compression modular from Lifelearner to achieve high 1128

compression rates and minimal footprint. It is used in the testing of advanced architectures (YAMNet and ViT). 1129



A.2 Datasets1130

To complement the relative simplicity, limited variety, and lack of generalizability of the datasets tested in previous studies, we1131

added three audio datasets to the single-label image datasets (CIFAR-100 [Krizhevsky et al., 2009], MiniImageNet [Vinyals et1132

al., 2016]) from previous studies. Specifically, we used the UrbanSound8K [Salamon et al., 2014] dataset with fewer classes,1133

the ESC-50 [Piczak, 2015] dataset with more classes, and the GSCv2 [Warden, 2018] dataset for keyword spotting (KWS). We1134

demonstrate trade-offs between performance and system resources on resource-constrained devices by extensively evaluating1135

these datasets in different Meta-CL approaches. The details of each target dataset employed in our study are described below.1136

CIFAR-100 [Krizhevsky et al., 2009]. This dataset, developed by researchers supported by the Canadian Institute for1137

Advanced Research, has 60,000 photos categorized into 100 classes, with each class including 600 images. The creation of1138

this used the identical technique as CIFAR-10. The images were obtained by utilizing search phrases from WordNet, and any1139

duplicate or irrelevant images were eliminated. The dataset is structured into 20 superclasses, with each superclass consisting1140

of 5 associated classes. The labelers meticulously inspected and assigned labels to each image based on precise instructions,1141

guaranteeing that each class was distinct from the classes in CIFAR-10. This ensures that CIFAR-100 may be effectively used as1142

a negative example for CIFAR-10. The dataset is designed for the purpose of training models in object recognition, specifically1143

focusing on small, natural photos.1144

MiniImageNet [Vinyals et al., 2016]. This dataset was formed by randomly choosing 100 classes from the complete ImageNet1145

dataset. Each class in the Mini-ImageNet dataset consists of 600 color images, each having dimensions of 84x84 pixels. The1146

classes were partitioned into 80 for training and 20 for testing, with the guarantee that the test classes were never exposed during1147

the training process. This dataset is intentionally more intricate than CIFAR-10, but still feasible for contemporary machine1148

memory. It enables quick development and experimentation. ImageNet is an extensive visual recognition dataset comprising1149

more than 14 million photos categorized based on the WordNet hierarchy. Every image is annotated with the corresponding thing1150

it depicts. The dataset facilitates a range of computer vision tasks, such as object detection, classification, and segmentation. For1151

the purpose of classification, it includes a collection of photos spanning 1,000 different categories. ImageNet’s extensive size and1152

wide range of variations have established it as a standard for training and assessing deep learning models.1153

UrbanSound8K [Salamon et al., 2014]. The development of UrbanSound required the compilation of a wide-ranging and1154

comprehensive dataset of urban noises. The researchers made use of the Freesound archive, which contains more than 160,0001155

recordings contributed by users, with a significant number of them being from metropolitan environments. They conducted a1156

search and retrieved recordings by utilizing specified class names, manually weeding out non-field recordings. The outcome of1157

this was the acquisition of 1302 recordings, amounting to a total of 27 hours of audio. Out of these, 18.5 hours were dedicated to1158

manually annotating sound occurrences in 10 different categories, namely air conditioner, car horn, children playing, dog bark,1159

drilling, engine idling, pistol shot, jackhammer, siren, and street music. Every recording was marked with annotations indicating1160

the precise start and end times of sound events, as well as their prominence, whether they were in the foreground or background.1161

UrbanSound8K is a subset of a dataset specifically created to train sound classification algorithms. It contains 8.75 hours of1162

audio that has been divided into 4-second segments. The taxonomy classifies sounds into four main groups: human, nature,1163

mechanical, and music, enabling thorough and methodical examination of urban noises.1164

ESC-50 [Piczak, 2015]. The primary objective of creating the ESC-50 dataset was to alleviate the limited availability of freely1165

accessible datasets containing ambient sounds. The dataset comprises 2,000 audio clips, each tagged and lasting 5 seconds. These1166

clips are categorized into 50 classes, which are further separated into five key categories: animal sounds, natural soundscapes1167

and water sounds, human non-speech sounds, interior/domestic sounds, and exterior/urban noises. The selection of clips was1168

carefully picked to prioritize the prominence of sound events while minimizing the presence of background noise. The quality1169

control process included CrowdFlower’s methods and additional validation by the author, resulting in approximately twelve1170

human categorization entries per clip. The dataset was generated with the purpose of aiding research in the field of environmental1171

sound categorization, providing a reliable benchmark for the evaluation of automatic sound recognition systems. The dataset is1172

accessible to the public and contains an additional set of 250,000 video clips without labels, which can be used for unsupervised1173

learning experiments. The ESC-50 dataset is a valuable resource for investigating machine learning methods in the field of1174

ambient sound classification.1175

GSCv2 [Warden, 2018]. This dataset, created by Pete Warden from Google Brain, seeks to simplify the process of training and1176

evaluating keyword-detecting systems. The creation of the "Speech Commands" dataset entailed gathering spoken words from a1177

varied collection of speakers through a web-based application that utilized the WebAudioAPI to record utterances. The dataset1178

comprises 35 distinct word utterances, encompassing categories such as numbers, frequent instructions, and miscellaneous terms1179

such as "tree" and "wow". The dataset is specifically intended for limited-vocabulary speech recognition tasks, with the objective1180

of identifying instances where one of the target words is spoken from a selection of ten or fewer terms. In addition, the dataset1181

contains recordings of background noise to use in training models to distinguish between speech and non-speech audio. The1182

objective was to record audio that accurately represented the task of on-device trigger phrases, with a specific emphasis on 101183

words: "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", and "Go". Every user would activate a "Record" button,1184

and a randomly selected word would appear on the screen for a duration of 1.5 seconds while audio was being captured. The1185

audio snippets were saved as 16-bit single-channel PCM values at a 16 KHz rate in the form of one-second WAV files. The1186

dataset was specifically curated to be appropriate for training and assessing keyword spotting systems, with an emphasis on1187

offering a specialized dataset that distinguishes itself from conventional datasets utilized for complete sentence automatic speech1188



recognition. 1189

A.3 Model Architectures 1190

Referring to previous work [Lin et al., 2022], we add optimized DNN architectures and transformer architectures intended for 1191

resource-limited IoT devices to the evaluated three-layer CNN architectures, including YAMNet [Howard et al., 2017], and 1192

ViT [Dosovitskiy et al., 2020]. YAMNet employs the MobileNetV1, which is a highly efficient model specifically designed 1193

for applications involving mobile and embedded vision. Depthwise separable convolutions are utilized in their construction, 1194

thereby reducing computing complexity by decomposing the normal convolution operation into separate depthwise and pointwise 1195

convolutions. This efficient structure enables the development of compact deep neural networks. MobileNets additionally 1196

incorporate two hyperparameters, namely width multiplier and resolution multiplier, that allow for adjusting the balance between 1197

model size, latency, and accuracy. Developers can tailor MobileNets to match the precise resource limitations of their application 1198

by fine-tuning these hyperparameters. MobileNets have demonstrated equivalent performance to larger, more intricate models, 1199

but with a substantially smaller size and faster computational speed. They have been effectively utilized in a wide range of 1200

activities including item identification, precise categorization, facial features, and other applications. YAMNet provides a flexible 1201

and effective approach for implementing deep learning models on mobile and embedded devices. Moreover, MobileNets may 1202

be customized to meet unique application needs by modifying the hyperparameters, rendering them adaptable and effective 1203

solutions for on-device artificial intelligence. The Vision Transformer (ViT) is an architecture based on transformers, which 1204

has demonstrated encouraging outcomes in activities related to image identification. ViT, unlike typical Convolutional Neural 1205

Networks (CNNs), operates on inputs in a 2-dimensional format instead of a 1-dimensional series of patches. The model includes 1206

Axial Transformer blocks, consisting of row-self-attention followed by a multi-layer perceptron (MLP), and then column-self- 1207

attention followed by an MLP, instead of the conventional self-attention followed by an MLP. ViT has undergone pre-training 1208

using extensive datasets such as ImageNet-21k and JFT-300M. It has demonstrated exceptional performance on several image 1209

recognition benchmarks, including ImageNet, CIFAR-100, and the VTAB classification suite [Zhai et al., 2019], surpassing all 1210

previous records. ViT models exhibit superior memory efficiency and outperform CNNs with reduced computational resources. 1211

They can be optimized for specific tasks such as detection and segmentation, and demonstrate potential for scenarios with limited 1212

data transport. ViT is a transformer-based model that has shown impressive results in image identification tasks, particularly 1213

when it is pre-trained on extensive datasets and then fine-tuned for specific applications. 1214

A.4 Detailed Experimental Setup 1215

Training Detail: Consistent with prior meta-training research, we employed a batch size of 1 for the inner-loop updates and 1216

64 for the outer-loop updates across 20,000 steps to ensure the accuracy of our results. To obtain a meta-trained DNN with 1217

the highest possible validation set accuracy, we tested with various learning rates required for both the inner and outer loops. 1218

Consequently, we established the learning rate for the inner loop (α) was set to 0.001, and the learning rate for the outer loop 1219

(β) was also set to 0.001 for all datasets. During the ESC-50 test, we conducted five training sessions, using 1600 clips as the 1220

training set and 400 clips as the test set. In the meta-testing phase, we assessed ten distinct learning rates for each technique and 1221

reported the most successful outcomes. Additionally, to evaluate the precision of replay systems, we experimented with batch 1222

sizes of 8 and 16. We noticed minimal fluctuations in the performance of CL. We selected a batch size of 8 because it requires 1223

less memory than larger batch sizes. 1224

Evaluation Protocol: With reference to previous research [Beaulieu et al., 2020], this study prioritizes the accuracy of unseen 1225

samples across new categories in CL. The accuracy rate signifies the capacity of CL to make generalizations. In addition, we 1226

analytically calculate the memory footprint required to perform CL (model parameters, optimizers, and activations memory). To 1227

obtain the peak memory footprint during the CL process, we include (1) model memory for the model itself and the weights 1228

to be updated, (2) optimizer memory for gradients, and (3) activations memory for intermediate outputs for weights update. 1229

Furthermore, we measure the end-to-end latency and energy consumption of various approaches to CL on the edge device 1230

over specified categories. To measure the end-to-end latency and energy, we include the time and energy used to: (1) load a 1231

model and(2) perform CL using all the given samples (e.g., 30) over all the given classes (e.g., 10). We test the latency and 1232

total energy expenditure for end-to-end CL by deploying MetaCLBench and baselines on an edge device, Raspberry Pi 3B+. 1233

Regarding energy, we measure the total amount of energy consumed by a device during the end-to-end CL process. This is 1234

performed by measuring the power consumption on Raspberry Pi 3B+ using a YOTINO USB power meter and deriving the 1235

energy consumption following the equation: Energy = Power × Time. 1236

System Implementation: The initial phase of Meta-CL is the meta-training stage, which facilitates swift deployment 1237

of the model by initializing the neural network with pre-trained weights. Subsequently, the meta-testing phase incorporates 1238

optimizations compatible with hardware, enhancing system efficiency when implemented on embedded devices such as Raspberry 1239

Pi 3B+. Source code of MetaCLBench will be publicly available upon publication2. 1240

Embedded Device: The Raspberry Pi 3B+ is equipped with a quad-core ARM Cortex-A53 processor and has 1 GB of RAM. 1241

It should be noted that the available memory on the Raspberry Pi 3B+ while it is not in use is approximately 600 MB. This is 1242

because some of the memory is already being used by background processes, concurrent apps, and the operating system. We 1243

2https://github.com/theyoungkwon/MetaCLBench

https://github.com/theyoungkwon/MetaCLBench


(a) ESC-50 (b) Urbansound8K (c) GSCv2

Figure 4: The accuracy of ESC-50, Urbansound8k, GSCv2 datasets using the 3-Layer CNN architecture.

(a) ESC-50 (b) Urbansound8K (c) GSCv2

Figure 5: The accuracy of ESC-50, Urbansound8k, GSCv2 datasets using the YAMNet architecture.

utilize Faiss (PQ Framework) [Johnson et al., 2019] and PyTorch 1.13 (Deep Learning Framework) [Paszke et al., 2019] as1244

software platforms to create and assess the meta-training and meta-testing stages on embedded devices.1245

B Additional Results1246

In this section, we present additional results that are not included in the main content of the paper due to the page limit.1247

B.1 Accuracy1248

To visualize the change in accuracy as the training set grows and how each Meta-CL method compares, we provide the results of1249

accuracy on the three architectures (3-layer CNN, YAMNet, and ViT) and six Meta-CL methods based on the five datasets as1250

shown in Figures 4, 5, 6, and 7. The results reveal that models relying solely on pre-trained weights ("Pretrained") exhibit lower1251

accuracy, averaging 22.18% and 13.8% across the datasets for CNNs and more advanced architectures, such as YAMNet and1252

ViT. This result indicates that traditional transfer learning fails to address the complexities of few-shot learning scenarios. Within1253

CNNs, baseline methods like ANML demonstrated improvement over the pretrained-only approach (with an average accuracy1254

gain of 16.7%). This improvement was further augmented by incorporating the AIM, resulting in an additional 2.54% average1255

accuracy gain. However, these gains still fell short of those achieved by the Oracle and Lifelearner methods (by a deficit of1256

15.92% in accuracy). The constrained sample size in the meta-testing phase poses a challenge to attaining high accuracy levels,1257

even considering the theoretical upper limit of accuracy. Our research also indicated that both CNNs and advanced models1258

experience a marked decline in performance when meta-training proceeds without prior pre-training, noting an average 13.98%1259

improvement after pre-training. Given that advanced models intrinsically include pre-trained weights, further pre-training does1260

not substantially increase their accuracy. Thus, pre-training is affirmed as a critical step for enhancing model accuracy. This study1261

underscores that regardless of the method employed, the procedural sequence of pre-training followed by meta-training before1262

evaluation is indispensable for attaining heightened accuracy levels, recognizing that advanced models inherently incorporate a1263



(a) CIFAR100 (b) MiniImgenet

Figure 6: The accuracy of CIFAR100, MiniImgenet datasets using the 3-Layer CNN architecture.

(a) CIFAR100 (b) MiniImgenet

Figure 7: The accuracy of CIFAR100, MiniImgenet datasets using the ViT architecture.

pre-training phase. These observations indicate a non-trivial trade-off between accuracy, memory, and computation for all the 1264

employed architectures in our work. 1265

B.2 Peak Memory Footprint 1266

Measurements were conducted to ascertain the maximum amount of RAM required for executing backpropagation and storing 1267

rehearsal samples. The memory for performing backpropagation is divided into three parts: (1) model memory, which is 1268

responsible for storing model parameters; (2) optimizer memory, which is responsible for storing gradient and momentum 1269

vectors; (3) activation memory, which is responsible for storing intermediate activations that are reused during backpropagation. 1270

Table 3 shows the various methods and the peak memory usage of our system. First, we found that although AIM improves 1271

accuracy, it takes up much memory space because there are many parameters in the AIM module. The memory required is as 1272

large as 1,562 MB for MiniImageNet and 2,648 MB for UrbanSound8K, which far exceeds the RAM capacity of embedded 1273

devices like the Pi 3B+ and causes an out-of-memory (OOM) problem. Consequently, it becomes challenging to utilize it in edge 1274

devices. OML, ANML, Oracle, Pretrained, and LifeLearner have a more minor memory requirement. However, Pretrained and 1275

ANML are less accurate. In contrast, LifeLearner is the most satisfactory, requiring only 136-496 MB of very high compression 1276

rates with high accuracy comparable to Oracle. 1277



(a) Urbansound8k (b) ESC-50

Figure 8: Comparison of accuracy with and without pretraining for datasets UrbanSound8K and ESC-50 using the 3-Layer CNN architecture.

B.3 End-to-end Latency & Energy Consumption1278

Table 3 also presents the operational efficiency of various Meta-CL methods on edge devices, with specific emphasis on1279

end-to-end latency and energy consumption. The end-to-end latency is calculated by taking into account three different times:1280

(1) The duration required for loading the pre-trained model, (2) The duration needed for sequentially training the model for each1281

specified class, and (3) The duration needed for employing further optimization proposed in specific Meta-CL methods such as1282

compression method of LifeLearner or training additional module such as AIM. First, we measured the end-to-end latency of1283

CL for all systems on the Raspberry Pi CPU for all classes for each dataset (30 samples per class). LifeLearner achieved fast1284

end-to-end latency. Due to the large amount of memory required by the AIM series, crashes occurred several times during the1285

test due to memory exhaustion. While Raw OML may exhibit the highest accuracy among advanced architectures, our tests have1286

demonstrated that Raw methods also require the most computational resources in terms of latency and energy consumption.1287

Additionally, our findings indicate that the YAMNet architecture significantly decreases capacity requirements due to its smaller1288

size; however, it exhibits greater delays and higher energy consumption as a result of its more intricate architecture compared to1289

CNN. As a result, we must consider factors beyond a single result alone when selecting Meta-CL methods for edge devices.1290

To establish generalizability, we extended our evaluation to diverse edge devices with varying computational capabilities1291

(Jetson Nano with enhanced specifications and Pi Zero 2 with reduced capacity). Table 2 below shows the end-to-end latency1292

and energy consumption results across these three edge devices, confirming that LifeLearner achieves a 7.5-fold reduction in1293

latency compared to Oracle.1294

C Further Analysis and Discussion1295

C.1 With and Without pre-training on CNN1296

In this section, we examine the impact of hyperparameter variations on model accuracy. First, we investigate the influence of1297

pre-training on the accuracy metric. Initially, we evaluated the five datasets without pre-training; the two image datasets and1298

GSCv2 exhibited satisfactory accuracy. However, the performance on Urbansound8k and ESC-50 was suboptimal. Consequently,1299

we adopted the strategy of pre-training as employed in advanced models, incorporating pre-training before meta-training for each1300

method. Figure 8 illustrates that including pre-training significantly enhances model efficacy. Specifically, in the Urbansound8k1301

and ESC-50 datasets, all Meta-CL methods demonstrated an average efficiency increase of 13.98% following pre-training.1302

Consequently, pre-training plays a significant role in enhancing accuracy, particularly for fundamental algorithms such as ANML1303

and OML, where accuracy without pre-training is a mere 5%. Advanced architectures intrinsically incorporate pre-training,1304

obviating the need for additional pre-processing. Nonetheless, these sophisticated architectures, when incorporating pre-training,1305

exhibit increased latency and energy consumption.1306

C.2 Number of replay epochs1307

Recognizing that an increased number of replays correlates with heightened latency and energy usage, we explored the association1308

between replay frequency and accuracy. Figure 9a indicates that Oracle OML necessitates more than five replays to attain elevated1309

accuracy levels, thereby escalating energy expenditure throughout the training phase. Conversely, Latent OML demonstrates1310

superior performance, requiring merely one or two replays to reach comparable accuracy, thereby diminishing system overhead.1311

In the case of the same dataset, the efficiency of Latent OML after five replays approximates that of Oracle OML following ten1312

replays. The same observation is evident in the CNN architecture depicted in Figure 9d; here, one or two iterations of the Latent1313



(a) Oracle& Latent under YAMNet architecture (b) Raw& Latent under YAMNet architecture

(c) ViT architecture (d) CNN architecture

Figure 9: Comparison of different Meta-CL methods regarding the number of replay epochs.

method attain the same level of accuracy as the Oracle method after five iterations. Additionally, we note that exceeding five 1314

iterations does not significantly enhance accuracy. Figures 9band 9cillustrate that the accuracy of Raw OML within the advanced 1315

methods surpasses that of the previously tested Latent approach. 1316

C.3 Multi Compression Module. 1317

In CNN architectures, ANML with AIM demonstrates substantial accuracy improvements (26.0% to 34.6% on CIFAR100), 1318

albeit with increased memory requirements (39.69MB to 1,093MB). LifeLearner presents an optimal balance between accuracy 1319

and memory utilization in resource-constrained environments. The integration of AIM, while beneficial for accuracy, introduces 1320

significant computational overhead, particularly in Raw ANML implementations (11,424s latency, 52.5KJ energy consumption 1321

on CIFAR100). Oracle ANML offers a compromise between performance enhancement and resource efficiency. 1322

Vision Transformer (ViT) and YAMNet architectures exhibit analogous performance-resource tradeoffs. ViT implementations 1323

with OML and AIM show improved accuracy but incur substantial computational costs (22,968s latency, 103KJ energy 1324

consumption on CIFAR100). Similarly, YAMNet with AIM achieves superior accuracy (42.9% to 71.0% on GSCv2) at the 1325

expense of increased memory utilization (10.16MB to 608.2MB). Pretrained YAMNet models demonstrate superior resource 1326

efficiency metrics. 1327



D Extended Related Work1328

D.1 Continual Learning1329

Neural network training is difficult to shift from batch learning to a continuous learning model because neural networks are1330

different from human brain mechanisms. Deep neural network-based systems that are continuously updated with new data suffer1331

from a severe forgetting problem, where performance on old tasks typically drops significantly, known as CF [McCloskey and1332

Cohen, 1989; Parisi et al., 2019; Wang et al., 2024; Kwon et al., 2021a; Jha et al., 2021]. Researchers have put forward numerous1333

approaches to prevent CF, mostly encompassing rehearsal-based, regularization-based, and parameter isolation-based strategies.1334

(1) Rehearsal-based approaches [Rebuffi et al., 2017; Wu et al., 2019; Chauhan et al., 2020; Kwon et al., 2024a] allow storing1335

some of the early training data, i.e., old data, in a cache, which will be used for replay or prototype as new tasks are learned1336

as a way of preventing CF. At this point, cache size, storage data selection, data storage form, and the way old and new data1337

are mixed are all important influencing factors. Rehearsal-based approaches include memory-based, generation-based replay,1338

and other approaches. Memory-based approaches generally necessitate a memory buffer for storing data instances or pertinent1339

information from the previous task. This stored information is then retrieved and utilized during the learning of a new task to1340

reinforce the knowledge acquired from the prior activity. Rebff et al. first proposed a strategy for learning both the classifier and1341

the feature representations simultaneously during a continuous learning process, which became an incremental classifier(iCARL)1342

based on representational learning [Rebuffi et al., 2017]. During representation learning, iCARL is trained using a small number1343

of data instances representative of the old category stored and instances from the new task. Wu et al. suggest that the present1344

approaches, which demonstrate good performance on small datasets with only a few tasks, are unable to sustain their performance1345

on huge datasets with thousands of tasks [Wu et al., 2019]. Therefore, they proposed bias-corrected (BIC) methods that focus on1346

continuous learning from large datasets. Because there is actually a strong bias in the classification layer for each new task, BIC1347

segregates the validation set from the amalgamation of previous and new data instances and incorporates a linear bias correction1348

layer subsequent to the classification layer. This correction layer utilizes the validation set to rectify any bias present.1349

Generative replay-based methods are an alternative to memory-based methods, using generative modules that can reproduce1350

information related to previous tasks instead of memory buffers. Shin et al. proposed a deep generative replay method (DMC)1351

that sequentially learns multiple tasks by mimicking pseudo-data generated from previous training examples by a GAN model1352

and pairing them with corresponding labels [Shin et al., 2017]. Nevertheless, a significant limitation is that the efficacy of the1353

statement is contingent upon the caliber of the generator. Deep model consolidation (DMC) was proposed by Zhang et al [Zhang1354

et al., 2020]. The process begins by training a distinct model for the new class using labeled data. Subsequently, the old and new1355

models are merged by utilizing publicly accessible unlabeled auxiliary data. This approach overcomes the difficulties because of1356

the inaccessibility of legacy data and mines these auxiliary data for rich transferable representations to facilitate incremental1357

learning.1358

Generative replay methods have been shown to be effective on problems with relatively simple inputs, but for more complex1359

input problems, such as natural images, generative replay methods may face greater challenges. While generative replay still has1360

some advantages in class incremental learning problems using natural images, these methods rely on pre-trained networks or1361

extensive non-incremental initialization phases.1362

(2) Regularization-based approaches [Kirkpatrick et al., 2017; Zenke et al., 2017] usually impose restrictions on various model1363

parameters and hyperparameters during the updating process to achieve the goal of consolidating knowledge learned in a straight1364

line while learning a new task, thus mitigating CF in continuous learning. Regularization-based approaches include methods1365

such as optimizing constraints on important model parameters to add distillation losses with respect to the model as an objective.1366

A common approach is to enhance the loss function by regularizing previously acquired knowledge, which is a technique that1367

gained recognition as Enhanced Weight Consolidation (EWC) was first embodied by Kirkpatrick et al. [Kirkpatrick et al., 2017].1368

EWC introduces a novel quadratic penalty term in the loss function to limit pattern modifications to weights that were more1369

important for the previous learning task. In order to limit the parameter to low-loss regions that are common between tasks,1370

instead of only updating low-loss regions for new tasks by calculating the importance of the weights using the diagonal of the1371

Fisher information matrix [Zamir, 1998], thus mitigating the CF problem. The rebalancing uniform classifier LUCIR method1372

was proposed by Hou et al. [Hou et al., 2019]. This method proposes three loss functions to bind the bias problem present in1373

incremental learning due to the imbalance between old and new samples. The data is rebalanced by re-assigning weights in each1374

iteration cycle. This means that for a few class instances, higher weights will be assigned; for the majority of class instances,1375

lower weights will be assigned. This reallocation technique ensures that the model pays more attention to the minority class, thus1376

improving the overall classification performance.1377

Methods utilizing knowledge distillation [Shin et al., 2017] incorporate the concept of knowledge distillation into incremental1378

learning by extracting knowledge from a model trained on a previous task into a model trained on a new task, therefore1379

consolidating previously acquired knowledge. Li et al. proposed a method for learning without forgetting (LWF, Learning1380

without Forgetting) [Li and Hoiem, 2017]. Prior to acquiring new knowledge, LWF retains a duplicate of the preceding model1381

parameters. Subsequently, the model acquired from the new task data instances is employed as the classifier target for the old1382

task. The classifier for the new task is utilized with the objective of attaining the real value. The total of the losses from the new1383

task and old task is calculated and employed as the ultimate loss. Douilaed et al. refer to continuous learning as representation1384

learning and propose a distillation loss that becomes a summarized output distillation (POD) [Douillard et al., 2020], which1385



restricts the updating of the final output and the learned representation of the middle layer. The disadvantage of such methods is 1386

that after the first task, all the parameters of the hidden layer are frozen but representation learning is limited. 1387

(3) Parameter isolation-based approaches [Yoon et al., 2017; Mallya and Lazebnik, 2018] typically involve expanding the 1388

old model on new tasks and assigning different model parameters to different tasks with varying degrees of isolation to prevent 1389

subsequent tasks from interfering with previously learned knowledge. 1390

Parameter isolation-based approaches allocate distinct model parameters to individual tasks through the dynamic modification 1391

of the network architecture. Yoon et al. introduced a Dynamically Extensible Network (DEN) [Yoon et al., 2017]that leverages 1392

acquired information from previous jobs and expands the network structure when the existing knowledge is inadequate for 1393

handling new tasks. Neurons undergo processes of addition, duplication, and separation to expand the structure of the network. 1394

In addition to using a parameter isolation-based approach to dynamically change the network architecture, the researchers 1395

also designed a fixed network architecture. This architecture can still assign different parameters to handle different tasks. 1396

Mallya et al. proposed PackNet [Mallya and Lazebnik, 2018], a method that first fixes the parameters of the old task and second 1397

trains the entire neural network for each new task. After the training is completed, unnecessary parameters are released using 1398

weight-based pruning techniques and redundant spatial models are retained. Fernando et al. proposed PathNet [Fernando et 1399

al., 2017]which initiates the training process by randomly selecting a few paths within the network. A race selection genetic 1400

algorithm is then employed to choose the most optimal paths for training on the given task. Afterward, for each subsequent task, 1401

the model parameters on all the paths chosen in the prior tasks are locked, while the remaining parameters are reset and trained 1402

again using the aforementioned approach to ultimately achieve the optimal path. Afterward, for each subsequent job, the model 1403

parameters on all the previously selected paths are fixed, while the remaining parameters are reset and trained again using the 1404

aforementioned method in order to ultimately choose the optimal path. 1405

The method based on parameter isolation is simply to cope with the learning of a new task by adding parameters to the original 1406

model, but this method does not eliminate the interference between the new parameters and the old ones, nor does it ensure that 1407

the new parameters will not overwrite the old ones. Therefore, even with the parameter isolation-based approach, incremental 1408

learning is still limited by the problem of CF. 1409

(4) Recently, preserving the structure of previously acquired knowledge has also emerged as a compelling area of research. 1410

Tao et al. proposed the Topology Preserving Class Incremental Learning (TPCIL) approach [Tao et al., 2020]to store resilient 1411

Hebbian graphs [Song et al., 2000]in buffers for data playback effects rather than just stored instances of prior data. TPCIL is 1412

motivated by the concept derived from human cognitive research that the process of forgetting is a result of the destruction of 1413

topological structures in human memory, and the method mitigates CF by injecting topological retention terms into the loss 1414

function. 1415

The ’regularization and parameter isolation based approach’ mentioned above sometimes does not work as well as it should. 1416

This is because the approach is not always consistent with new incremental learning and the advantages can even be negative. 1417

D.2 Meta Learning 1418

Meta Learning, also known as few-shot learning, is one of the hotspots of current research. Few-shot learning aims to use few 1419

training samples to recognize new classes that are not concatenable, regardless of the model’s performance in recognizing the 1420

base class, and its core problem is that deep models tend to be overfitted to a limited number of training samples [Hospedales et 1421

al., 2021]. To mitigate this issue, researchers have proposed a number of methods, which mainly include three main categories: 1422

model-based fine-tuning, data-based enhancement, and migration learning [Wang et al., 2020]. 1423

(1) Meta learning methods [Finn et al., 2017; Arik et al., 2018; Chauhan et al., 2022] based on model fine-tuning are more 1424

traditional approaches, which typically pre-train models on large-scale data and then fine-tune the existing parameters through 1425

regularization. Because of the limited quantity of training samples, how to tune the parameters without leading to overfitting 1426

becomes a key issue, for which the researchers proposed the following solution. a. Early stopping: Arik et al. separated the 1427

validation set from the training set in order to oversee the training process, and the training will cease when there is no discernible 1428

enhancement in the performance of the validation set [Arik et al., 2018]. b. Selective updating of parameters: Keshari and his 1429

team gave a set of pre-trained filters that only learn the parameters that are multiplied by the filters, and this selective updating 1430

of the parameters effectively mitigates overfitting [Keshari et al., 2018]. c. Simultaneous updating of relevant parts of the 1431

parameters: Yoo et al. group the pre-trained neural networks so that the filters are fine-tuned based on some auxiliary information 1432

using the training set via grouped backpropagation for the purpose of jointly updating each grouping using the same update 1433

information [Yoo et al., 2018]. d. Using model regression networks: Kozerawski et al. mapped sample embeddings into a 1434

transformation function for classification decision boundaries [Kozerawski and Turk, 2018]. The model regression network 1435

represents a transformation that is independent of the specific task, which translates parameter values acquired via training 1436

on a limited number of cases to parameter values acquired through training on a substantial number of samples. Although 1437

the model-based fine-tuning approach is simpler, the differences between the source dataset and the target dataset may lead to 1438

overfitting of the model on the target dataset during use. 1439

(2) The fundamental problem of Meta learning is that the sample size is too small, the problem can be supplemented by data 1440

enhancement methods to increase the diversity of the samples and supplement its insufficient number of images. Delta encoders 1441

were proposed by Schwartz et al [Schwartz et al., 2018]. The model can extract transferable intraclass deformations between 1442

training samples of the same class and apply these increments to small samples of the new class, effectively synthesizing new 1443



class samples as it goes. However, in this method, the features usually extracted by the classification network only focus on the1444

most discriminative regions, while ignoring other less discriminative regions, which is not conducive to the generalization of the1445

network. To solve this problem, Shen et al. replaced the fixed attention mechanism with an indeterminate one [Shen et al., 2019].1446

First, the input image is extracted with features, and then the average is pooled and classified to obtain the cross-entropy loss.1447

This loss is then used to derive the gradient for the uncertain attention mechanism, thus updating the model.1448

(3) Transfer learning [Yosinski et al., 2014; Kwon et al., 2024b] is the use of knowledge already learned on one task to improve1449

learning on another task. Its main goal is to quickly transfer what has already been learned to a new domain. a. Metric-based1450

learning: Vinyals et al. proposed a Matching Network, which maps training samples and validation samples to corresponding1451

labels [Vinyals et al., 2016]. Then the samples are mapped into a low dimensional vector space using LSTM to compute the1452

similarity between the new sample and each sample. Finally the predicted labels are output using the kernel density estimation1453

function. b. Meta learning based approach: Finn et al. proposed a model-independent Model Aagnstic Meta Learning (MAML),1454

aiming at obtaining a good general initialization parameter for the model and achieving fast fine-tuning of the model on new1455

tasks [Finn et al., 2017]. The strategy learns features that are applicable to a variety of tasks, allowing the model to quickly1456

adjust the model’s weights so that it can be generalized and quickly adapted to new tasks. However, its disadvantage makes it1457

necessary to train with a sufficient number of tasks to converge. For this reason, Sun et al. proposed Meta Transfer Learning1458

(MTL) for Few-shot learning. This method enables MAML to learn only the last layer as a classifier [Sun et al., 2019]. It is first1459

trained on a large-scale dataset to get a full-time deep neural network and fixes the lower-level convolutional layers as feature1460

extractors. The parameters of the feature extractor neurons are subsequently acquired through learning to ensure their rapid1461

adaptability to the Few-shot job. When only a small amount of labeled data is used, the method can help deep neural networks1462

converge quickly and reduce the probability of overfitting occurring. Rusu et al. proposed the LEO method based on MAML to1463

address the uncertainty of its use of Meta learning [Rusu et al., 2018]. The method first initializes the parameters of the model1464

for each task. Its parameters are sampled from a conditional probability distribution associated with the training data. Secondly,1465

the parameters are updated in a low-dimensional hidden space to adapt the model more efficiently.1466

D.3 Meta Continual Learning1467

Most of the traditional methods of class Continuous Learning lead to significant performance degradation when applied directly1468

to Meta-CL. Firstly, because of the limited number of samples in the new class during Meta-CL, the model is prone to overfitting1469

into the new class, resulting in a loss of its capacity to generalize to large sample tests. Second is the dilemma of facing a1470

performance tradeoff between the old and new classes. Due to the fact that in the case of very few samples, it is necessary to1471

increase the learning rate as well as enhance the gradient of the new class loss in order to learn the relevant knowledge of the1472

new class. However, this will make it more difficult to maintain the relevant knowledge of the old class. Therefore, researchers1473

address Meta-CL from a new cognitive perspective.1474

The problem of Meta-CL was raised by Tao et al. [Tao et al., 2020] at first, and they also proposed the TOpology-Preserving1475

knowledge InCrementer (TOPIC) framework. The original version of the neural network was used for unsupervised learning1476

during input. To accomplish the Few-shot supervised incremental learning task for each training task, the research team improved1477

it. The improved supervised neural gas network allows for incremental growth of nodes and edges through competitive learning.1478

Based on this, this study also designed the neural gas robustness loss function that can effectively suppress the forgetting of1479

old categories and the neural gas adaptation function that reduces the overfitting in new categories. The TOPIC framework1480

can alleviate the forgetting of old knowledge by stabilizing the topology of the neural gas network NGs. It also improves1481

representation learning on a small number of new category samples by making the NG grow [Fritzke, 1994]and adapt to new1482

training samples to prevent overfitting to new categories with fewer samples.1483

To solve the Few-shot incremental learning problem, Cheragian et al. proposed a Semantic-aware Knowledge Distillation1484

approach [Cheraghian et al., 2021]. The main idea is to introduce semantic information in knowledge distillation to accomplish1485

the preservation of old things in the process of Meta-CL. The method first transforms the labels into word vectors. The input1486

image is mapped to the space of its label word vectors to minimize the distance between the two vectors. No additional neural1487

network parameters need to be added as new categories emerge, thus reducing the dependence of network training on the amount1488

of data. Shi et al. proposed a method based on the discovery of flat minima (F2M) [Shi et al., 2021] for model training in1489

incremental Few-shot learning. An average minimum is when the model parameters are in a flat region and when the loss1490

function value is minimized. This flat region prevents the model from overfitting and preserves previously learned knowledge1491

when learning new data. A Continuous Evolutionary Classifier (CEC) was proposed by Zhang et al [Zhang et al., 2021]. The1492

method initially separates the feature extraction module from the classifier, where the feature extraction module is frozen to1493

avoid generating forgetfulness and only the classifier is changed for each incremental task. The process is that whenever vectors1494

for a new category are generated, the vectors obtained from all categories, old and new, will be aggregated together. Where each1495

vector is a node and the nodes are aggregated based on an attention mechanism that utilizes the invariance of the connections1496

between the nodes to maintain the old knowledge. Finally, the graph attention model is utilized to generate the final classifier by1497

combining the information of the emerged categories. A self-promoting prototype refinement mechanism (SPPR) was proposed1498

by Zhu et al [Zhu et al., 2021]. The technique uses the correlation matrix between newly introduced category samples and1499

pre-existing category prototypes to revise the current prototypes. This mechanism is realized by dynamic relational projection.1500

The heart-tired sample representations and the just-tired prototypes are mapped into the same embedding space, and the two1501



embeddings are computed in the above-mentioned distance metric in the space to compute the space of projection matrices 1502

between them. Ultimately, this matrix space serves as a weight for prototype refinement to guide the dynamics of the prototypes 1503

toward preserving existing knowledge and enhancing the defensibility of new categories. 1504

Recently, Zhou et al. proposed a Forward Compatible Training (FACT) [Zhou et al., 2022]. It makes it easy to merge new 1505

categories and facilitates the seamless integration of these categories into the existing model. In order to enable the model to 1506

be expandable, they designate many virtual prototypes in advance within the embedding area as reserved space and optimize 1507

these virtual circles to push instances of the same class closer together, thus reserving more space for incoming new classes. 1508

Subsequently, Constrained Few Shot Incremental Learning (C-FSCIL) was proposed by Hersche et al [Hersche et al., 2022]. The 1509

method first creates and updates the average prototype vector so that it serves as the average of the samples in memory. It then 1510

polarizes the prototype vector and retraces the fully connected layer for no more than a constant number of iterations. Finally, the 1511

average prototype vector is pushed so that it is quasi-orthogonal and remains close to the average prototype at the original site. 1512



Table 3: Performance and computational costs, memory footprint of six representative Meta-CL methods using three network architectures on
five datasets of image and audio domains. OOM indicates an out-of-memory issue.

CNN ViT

Dataset Method Accuracy Memory Latency Energy Accuracy Memory Latency Energy

CIFAR100

Pretrained 0.260 39.69MB 305s 1.44KJ 0.119 29.8MB 615s 2.96KJ
ANML 0.272 39.69MB 309s 1.44KJ - - - -
ANML+AIM 0.346 1,093MB 6,390s 29.43KJ - - - -
OML - - - - 0.271 29.8MB 628s 3.03KJ
OML+AIM 0.311 834.1MB 1,481s 6.84KJ - - - -
Raw ANML 0.392 99.5MB 11,424s 52.5KJ - - - -
Raw OML - - - - 0.40 153MB 22,968s 103KJ
Oracle ANML 0.445 39.93MB 1,866s 8.55KJ - - - -
Oracle OML - - - - 0.361 29.5MB 3,672s 19.4KJ
Lifelearner 0.452 15.45MB 374s 1.71KJ - - - -
Latent OML - - - - 0.365 36.8MB 764s 3.76KJ

Pretrained 0.258 474.5MB 1,198s 5.5KJ 0.234 336.6 MB 2,056s 11.2KJ
ANML 0.327 474.5MB 1,152s 5.3KJ - - - -
ANML+AIM 0.331 1,562 MB OOM OOM - - - -

Mini OML - - - - 0.255 336.6 MB 2,203s 11.4KJ
ImageNet OML+AIM 0.187 1,051 MB 1,434s 6.5KJ - - - -

Raw ANML 0.429 897.1 MB 185,610s 810KJ - - - -
Raw OML - - - - 0.454 1,334 MB 301,456s 1150KJ
Oracle ANML 0.438 475.0 MB 3,414s 15.7KJ - - - -
Oracle OML - - - - 0.349 337.7 MB 6,301s 31KJ
Lifelearner 0.433 512.5 MB 1,343s 6.17kJ - - - -
Latent OML - - - - 0.376 336.6 MB 2,250s 13KJ

CNN YAMNet

Pretrained 0.213 10.16MB 71.1s 0.324KJ 0.061 39.2MB 213.6s 1.08KJ
ANML 0.429 10.16MB 71.1s 0.324KJ - - - -
ANML+AIM 0.710 608.2MB 394.2s 1.8KJ - - - -

GSCv2 OML - - - - 0.329 39.2MB 209.8s 1.08KJ
OML+AIM 0.649 135.2MB 157.5s 0.72KJ - - - -
Raw ANML 0.135 45.72MB 735.6s 3.37KJ - - - -
Raw OML - - - - 0.749 120MB 1,482s 6.85KJ
Oracle ANML 0.712 10.20MB 569.7s 2.6KJ - - - -
Oracle OML - - - - 0.701 39.7MB 1,685s 14.6KJ
Lifelearner 0.713 3.40MB 75.6s 0.35KJ - - - -
Latent OML - - - - 0.704 40.9MB 235.8s 0.43KJ

Pretrained 0.182 1,382 MB 2,065s 5.7KJ 0.186 39.2 MB 1,365s 5.4KJ
ANML 0.596 1,382 MB 1,053s 12.4KJ - - - -
ANML+AIM 0.439 2,593 MB 1,098s 4.28KJ - - - -

Urban OML - - - - 0.262 39.2 MB 1,874s 5.36KJ
Sound8K OML+AIM 0.385 2,648 MB 167,986s 4.88KJ - - - -

Raw ANML 0.667 1,456 MB 1,985s 6.97KJ - - - -
Raw OML - - - - 0.595 139.3 MB 2,965s 7.45KJ
Oracle ANML 0.710 1,384 MB 1,647s 8.35KJ - - - -
Oracle OML - - - - 0.448 42.4 MB 1,875s 6.36KJ
LifeLearner 0.650 496 MB 2,086s 4.98KJ - - - -
Latent OML - - - - 0.442 39.2 MB 1,624s 4.37KJ

Pretrained 0.196 1,163MB 1,359s 7.2KJ 0.090 39.8MB 4,052s 19.6KJ
ANML 0.308 1,163MB 1,374s 7.2KJ - - - -
ANML+AIM 0.233 2,305MB OOM OOM - - - -

ESC-50 OML - - - - 0.135 39.8MB 3.986s 19.6KJ
OML+AIM 0.181 2,152MB OOM OOM - - - -
Raw ANML 0.358 5,005MB OOM OOM - - - -
Raw OML - - - - 0.577 210.8MB 28,465s 39.6
Oracle ANML 0.435 1,167MB 4,120s 20.3KJ - - - -
Oracle OML - - - - 0.442 42.5MB 12,473s 84.2KJ
Latent ANML 0.381 316.3MB 1,445s 7.8KJ - - - -
Latent OML - - - - 0.458 44.3MB 4,536s 7.4KJ
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