
On-Device Training at the Extreme Edge
Young D. Kwon

University of Cambridge
United Kingdom
ydk21@cam.ac.uk

ABSTRACT
On-device training is critical for user privacy and customisation.
However, deploying this on IoT devices andmicrocontrollers presents
significant challenges due to restricted memory, limited computa-
tional resources, and insufficient labelled user data. Existing ap-
proaches either ignore data scarcity problems, demand prohibi-
tively long training time (e.g. a few hours), or suffer from severe
accuracy degradation (≥10%). This paper introduces TinyTrain, an
on-device training framework that significantly reduces training
time by selectively updating parts of the model while explicitly
addressing data scarcity. TinyTrain employs a task-adaptive sparse-
update strategy that intelligently selects layers and channels using
a multi-objective optimisation criterion. This criterion simultane-
ously considers available user data, memory constraints, and com-
putational capabilities of the deployment device, enabling superior
performance on novel tasks with minimal resource consumption.
TinyTrain exceeds standard full-network training by 3.6-5.0% in ac-
curacy, reducing backward-pass memory and computational costs
by up to 1,098× and 7.68×, respectively. When deployed on com-
monly used edge devices, TinyTrain achieves 9.5× faster and 3.5×
more energy efficient training over existing methods, plus 2.23× re-
duced memory usage versus SOTA techniques, all while operating
within the 1 MB memory envelope of MCU-grade platforms.

KEYWORDS
Tiny Machine Learning, On-device Training, Cross-Domain Few-
Shot Learning, Personalisation, Microcontrollers

1 Introduction
Motivation: On-device training of deep neural networks (DNNs)
on edge devices has the potential to enable diverse real-world appli-
cations to dynamically adapt to new tasks and different (i.e. cross-
domain/out-of-domain) data distributions from users (e.g. person-
alisation) [1], without jeopardising privacy over sensitive data
(e.g. healthcare) [9].

Challenges: Despite its benefits, several challenges hinder the
broader adoption of on-device training. Firstly, labelled user data
are neither abundant nor readily available in real-world IoT applica-
tions [2]. Secondly, tiny edge devices are characterised by severely
limited memory [4]. With the forward and backward passes of DNN
training being significantly memory-hungry. Even network archi-
tectures that are tailored to microcontroller units (MCUs), such as
MCUNet [7], require almost 1 GB of training-time memory (see
Table 2), which far exceeds the RAM size of the widely used em-
bedded devices, such as Raspberry Pi Zero 2 (512 MB), and com-
modity MCUs (1 MB). Lastly, on-device training is limited by the
constrained processing capabilities of edge devices; with training
requiring at least 3× more computation (i.e. multiply-accumulate
(MAC) count) than inference. This places an excessive burden on

tiny edge devices that host less powerful CPUs, compared to the
server-grade CPUs or GPUs.

Prior Works: Recently, many on-device training works have
been proposed in the literature. For instance, (1) fine-tuning only
the last layer [6] leads to considerable accuracy loss (>10%) that
far exceeds the typical drop tolerance. (2) memory-saving tech-
niques by means of recomputation that trade off performing more
computations for lower memory usage incur significant computa-
tion overhead, further increasing the already excessive on-device
training time. (3) sparse-update methods selectively update only
a subset of layers and channels during on-device training, effec-
tively reducing both the memory and computation load. However,
the performance of this approach drops dramatically (up to 7.7%)
when applied at the extreme edge where data availability is low.
Moreover, it requires running a few thousands of computationally
heavy search [8] processes on powerful GPUs to identify impor-
tant layers/channels for each target dataset, unable to adapt to the
properties of the user data on the fly.

2 Method
To address the aforementioned challenges and limitations, we present
TinyTrain [5], the first approach that fully enables data-, compute-
, and memory-efficient on-device training on tiny edge devices.
Similar to SparseUpdate, instead of updating the whole model, Tiny-
Train leverages a sparse-update method to selectively train only
part of the architecture. However, TinyTrain departs from the static
configuration of the sparse-update policy, i.e. the subset of layers
and channels to be fine-tuned being fixed, and introduces task-
adaptive sparse update. Specifically, at run time, TinyTrain dynami-
cally adapts the sparse update policy based on both the properties of
the user data, and the memory and processing capacity of the target
device. Moreover, we introduce a new multi-objective criterion to
guide the layer/channel selection process that captures both the
importance of channels and their computational and memory cost.
Contrary to SparseUpdate’s server-based evolutionary search, our
criterion can be efficiently run on very constrained edge devices and
enables us to adapt the layer/channel selection in a task-adaptive
manner, leading to better on-device adaptation and higher accuracy.
To further address the drawbacks of SparseUpdate under scarce
data availability, TinyTrain enhances the conventional on-device
training pipeline by means of a few-shot learning (FSL) pre-training
scheme; this step meta-learns a reasonable global representation
that allows on-device training to be sample-efficient and reach high
accuracy despite the limited user data.

3 Evaluation
We comprehensively evaluate TinyTrain and the baselines based
on three DNN architectures and four cross-domain datasets by con-
ducting 200 trials for each dataset. Table 1 shows that TinyTrain



Kwon et al.

Table 1: Top-1 accuracy results of TinyTrain and the baselines.
TinyTrain achieves the highest accuracy.

Model Method Traffic Omniglot Aircraft Flower Avg.

MCUNet

None 35.5 42.3 42.1 73.8 48.4
FullTrain 82.0 72.7 75.3 90.7 80.2
LastLayer 55.3 47.5 56.7 83.9 60.8
TinyTL 78.9 73.6 74.4 88.6 78.9
SparseUpdate 72.8 67.4 69.0 88.3 74.4

TinyTrain (Ours) 79.3 73.8 78.8 93.3 81.3

None 39.9 44.4 48.4 81.5 53.5
FullTrain 75.5 69.1 68.9 84.4 74.5

Mobile LastLayer 58.2 55.1 59.6 86.3 64.8
NetV2 TinyTL 71.3 69.0 68.1 85.9 73.6

SparseUpdate 77.3 69.1 72.4 87.3 76.5

TinyTrain (Ours) 77.4 68.1 74.1 91.6 77.8

None 42.6 50.5 41.4 80.5 53.8
FullTrain 78.4 73.3 71.4 86.3 77.3

Proxyless LastLayer 57.1 58.8 52.7 85.5 63.5
NASNet TinyTL 72.5 73.6 70.3 86.2 75.7

SparseUpdate 76.0 72.4 71.2 87.8 76.8

TinyTrain (Ours) 79.0 71.9 76.7 92.7 80.1

MCUNet MobileNetV2 ProxylessNASNet
Architecture

0

1

2

3

4

5

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

J)

4.4

5.0

3.6

1.0 0.9 1.0

2.3 2.3
2.0

1.3 1.4 1.4
1.2 1.2 1.3

FullTrain LastLayer TinyTL SparseUpdate TinyTrain

������ ����������� ����������
����
��	�
�
	���


�

��

��

	�

��

���

��
�

�

��
��

�

�
��

�
��

�
�

��
���


�

� 
 �

�
 ��
��

�� �� ��� � ��

9.9x 

smaller

11.2x 

smaller

7.5x 

smaller

(b) Training Time

������ ����������� ����������
����
��

���
����

�

�

�

�

	




�
��
��
��
�
��
��
�
��
��
��
��
	�

	�	

��

���

��� ��� ���

��� ���
���

��� ��	 ��	��� ��� ���

3.7x

smaller

4.2x 

smaller

2.8x

smaller

(c) Energy Consumption

Figure 1: The end-to-end latency and energy consumption of
the on-device training methods across three architectures.

achieves the highest accuracy, with gains of 3.6-5.0% over fine-
tuning the entire DNN, denoted by FullTrain. On the compute front,
Table 2 shows that TinyTrain significantly reduces the memory foot-
print and computation required for backward pass by up to 1,098×
and 7.68×, respectively. TinyTrain further outperforms the SOTA
SparseUpdate method in all aspects, yielding: (a) 2.6-7.7% accuracy
gain across four datasets; (b) 1.59-2.23× reduction in memory; and
(c) 1.52-1.82× lower computation costs. Finally, we demonstrate
how our work makes important steps towards efficient training on
very constrained edge devices by deploying TinyTrain on a Pi Zero
2 embedded device and achieving an end-to-end on-device training
in 10 minutes, an order of magnitude speedup over the two-hour
training of FullTrain (see Figure 1). For TinyTrain, we also include
the time and energy to dynamically select layers/channels for our
task-adaptive sparse update, which takes around 20-35 seconds,
accounting for only 3.4-3.8% of the total training time of TinyTrain.
We further compare TinyTrain and SOTA on two embedded devices,
Pi Zero 2 and Jetson Nano, showing TinyTrain yields 1.08-1.12x
and 1.3-1.7x faster on-device training than SOTA, respectively.

Table 2: The memory footprint and computation costs for a
backward pass between TinyTrain and the baselines.

Model Method Memory Ratio Compute Ratio

MCUNet

FullTrain 906 MB 1,013× 44.9M 6.89×
LastLayer 2.03 MB 2.27× 1.57M 0.23×
TinyTL 542 MB 606× 26.4M 4.05×
SparseUpdate 1.43 MB 1.59× 11.9M 1.82×
TinyTrain (Ours) 0.89 MB 1× 6.51M 1×
FullTrain 1,049 MB 987× 34.9M 7.12×

Mobile LastLayer 1.64 MB 1.54× 0.80M 0.16×
NetV2 TinyTL 587 MB 552× 16.4M 3.35×

SparseUpdate 2.08 MB 1.96× 8.10M 1.65×
TinyTrain (Ours) 1.06 MB 1× 4.90M 1×
FullTrain 857 MB 1,098× 38.4M 7.68×

Proxyless LastLayer 1.06 MB 1.36× 0.59M 0.12×
NASNet TinyTL 541 MB 692× 17.8M 3.57×

SparseUpdate 1.74 MB 2.23× 7.60M 1.52×
TinyTrain (Ours) 0.78 MB 1× 5.00M 1×

4 Conclusion
We have developed the first realistic on-device training framework,
TinyTrain, solving practical challenges in terms of data, memory,
and compute constraints for extreme edge devices. TinyTrain opens
the door, for the first time, to on device training with acceptable
performance on a variety of low resources devices such as MCUs
embedded in IoT frameworks.

Limitations & Societal Impacts. Our evaluation is currently
limited to CNN-based architectures on vision tasks. As future work,
we hope to extend TinyTrain to different architectures (e.g. Trans-
formers, RNNs) and applications (e.g. audio or biological data [3]).
In addition, while on-device training avoids the excessive electricity
consumption and carbon emissions of centralised training, it has
thus far been a significantly draining process for the battery life
of edge devices. Nevertheless, TinyTrain paves the way towards
alleviating this issue as demonstrated in Figure 1c.

REFERENCES
[1] Jagmohan Chauhan, Young D. Kwon, Pan Hui, and Cecilia Mascolo. 2020. Con-

tAuth: Continual Learning Framework for Behavioral-Based User Authentication.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 4, Article 122 (Dec. 2020).

[2] Young D. Kwon, Jagmohan Chauhan, Hong Jia, Stylianos I. Venieris, and Cecilia
Mascolo. 2023. LifeLearner: Hardware-Aware Meta Continual Learning System
for Embedded Computing Platforms. In Proc. of SenSys ’23.

[3] Young D Kwon, Jagmohan Chauhan, Abhishek Kumar, Pan Hui, and Cecilia
Mascolo. 2021. Exploring System Performance of Continual Learning for Mobile
and Embedded Sensing Applications. In Proc. of SEC ’21.

[4] Young D. Kwon, Jagmohan Chauhan, and Cecilia Mascolo. 2022. YONO: Modeling
Multiple Heterogeneous Neural Networks on Microcontrollers. In proc. of IPSN
’22. 285–297. https://doi.org/10.1109/IPSN54338.2022.00030

[5] Young D. Kwon, Rui Li, Stylianos I. Venieris, Jagmohan Chauhan, Nicholas D.
Lane, and Cecilia Mascolo. 2023. TinyTrain: Deep Neural Network Training at
the Extreme Edge. arXiv:2307.09988 [cs.LG]

[6] Seulki Lee and Shahriar Nirjon. 2020. Learning in the Wild: When, How, and
What to Learn for On-Device Dataset Adaptation. In Proc. of AIChallengeIoT ’20.

[7] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. 2020.
MCUNet: Tiny Deep Learning on IoT Devices. In Proc. of NeurIPS ’20.

[8] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han.
2022. On-Device Training Under 256KB Memory. In Proc. of NeurIPS ’22.

[9] Nhat Pham, Hong Jia, Minh Tran, Tuan Dinh, Nam Bui, Young Kwon, Dong Ma,
Phuc Nguyen, Cecilia Mascolo, and Tam Vu. 2022. PROS: An Efficient Pattern-
Driven Compressive Sensing Framework for Low-Power Biopotential-BasedWear-
ables with on-Chip Intelligence. In Proc. of MobiCom ’22.

https://doi.org/10.1109/IPSN54338.2022.00030
https://arxiv.org/abs/2307.09988

	Abstract
	1 Introduction
	2 Method
	3 Evaluation
	4 Conclusion
	References

