
TinyTrain: Deep Neural Network Training at the
Extreme Edge

Young D. Kwon1 Rui Li2 Stylianos I. Venieris2
Jagmohan Chauhan3 Nicholas D. Lane1,2 Cecilia Mascolo1

1University of Cambridge, UK
2Samsung AI Center, Cambridge
3University of Southampton, UK

{ydk21,nd132,cm542}@cam.ac.uk {s.venieris,rui.li}@samsung.com J.Chauhan@soton.ac.uk

Abstract

On-device training is essential for user personalisation and privacy. With the
pervasiveness of IoT devices and microcontroller units (MCU), this task becomes
more challenging due to the constrained memory and compute resources, and the
limited availability of labelled user data. Nonetheless, prior works neglect the
data scarcity issue, require excessively long training time (e.g. a few hours), or
induce substantial accuracy loss (≥10%). We propose TinyTrain, an on-device
training approach that drastically reduces training time by selectively updating
parts of the model and explicitly coping with data scarcity. TinyTrain introduces
a task-adaptive sparse-update method that dynamically selects the layer/channel
based on a multi-objective criterion that jointly captures user data, the memory, and
the compute capabilities of the target device, leading to high accuracy on unseen
tasks with reduced computation and memory footprint. TinyTrain outperforms
vanilla fine-tuning of the entire network by 3.6-5.0% in accuracy, while reducing
the backward-pass memory and computation cost by up to 2,286× and 7.68×,
respectively. Targeting broadly used real-world edge devices, TinyTrain achieves
9.5× faster and 3.5× more energy-efficient training over status-quo approaches,
and 2.8× smaller memory footprint than SOTA approaches, while remaining within
the 1 MB memory envelope of MCU-grade platforms.

1 Introduction

On-device training of deep neural networks (DNNs) on edge devices has the potential to enable
diverse real-world applications to dynamically adapt to new tasks [40] and different (i.e. cross-
domain/out-of-domain) data distributions from users (e.g. personalisation) [38], without jeopardising
privacy over sensitive data (e.g. healthcare) [12].

Despite its benefits, several challenges hinder the broader adoption of on-device training. Firstly,
labelled user data are neither abundant nor readily available in real-world IoT applications. Secondly,
edge devices are often characterised by severely limited memory. With the forward and backward
passes of DNN training being significantly memory-hungry, there is a mismatch between memory
requirements and memory availability at the extreme edge. Even architectures tailored to micro-
controller units (MCUs), such as MCUNet [30], require almost 1 GB of training-time memory (see
Table 2), which far exceeds the RAM size of widely used embedded devices, such as Raspberry Pi
Zero 2 (512 MB), and commodity MCUs (1 MB). Lastly, on-device training is limited by the con-
strained processing capabilities of edge devices, with training requiring at least 3× more computation
(i.e. multiply-accumulate (MAC) count) than inference [61]. This places an excessive burden on tiny
edge devices that host less powerful CPUs, compared to the server-grade CPUs or GPUs [31].

Preprint. Under review.

ar
X

iv
:2

30
7.

09
98

8v
1

 [
cs

.L
G

]
 1

9
Ju

l 2
02

3

Recently, on-device training works have been proposed. These, however, have limitations. First,
fine-tuning only the last layer [28, 45] leads to considerable accuracy loss (>10%) that far exceeds the
typical drop tolerance. Moreover, memory-saving techniques by means of recomputation [6, 41, 58,
12] that trade-off more computation for lower memory usage, incur significant computation overhead,
further increasing the already excessive on-device training time. Lastly, sparse-update methods [43,
31, 4] selectively update only a subset of layers and channels during on-device training, effectively
reducing both memory and computation loads. Nonetheless, as shown in §3.2, the performance
of these approaches drop dramatically (up to 7.7% for SparseUpdate [31]) when applied at the
extreme edge where data availability is low. Also, these methods require running a few thousands of
computationally heavy search [31] or pruning [43] processes on powerful GPUs to identify important
layers/channels for each target dataset, unable to adapt to the properties of the user data on the fly.

0 5 10 15 20 25 30 35 40
Compute Cost [Millions of MACs]

50

55

60

65

70

75

80

To
p-

1
Ac

cu
ra

cy
 [%

]

FullTrain
x2286

LastLayer
x1.3

TinyTL
x1279

SparseUpdate
x3.1

TinyTrain (Ours)
x1

Figure 1: Cross-domain accuracy (y-
axis) and compute cost in MAC count (x-
axis) of TinyTrain and existing methods,
targeting MobileNetV2 on Meta-Dataset.
The radius of the circles and the corre-
sponding text denote the increase in the
memory footprint of each baseline over
TinyTrain. The dotted line represents the
accuracy without on-device training.

To address the aforementioned challenges and limitations,
we present TinyTrain, the first approach that fully enables
compute-, memory-, and data-efficient on-device training
on constrained edge devices. TinyTrain departs from the
static configuration of the sparse-update policy, i.e. the sub-
set of layers and channels to be fine-tuned being fixed, and
proposes task-adaptive sparse update. Our task-adaptive
sparse update requires running only once for each tar-
get dataset and can be efficiently executed on resource-
constrained edge devices. This enables us to adapt the
layer/channel selection in a task-adaptive manner, leading
to better on-device adaptation and higher accuracy. Specif-
ically, we introduce a novel multi-objective criterion to
guide the layer/channel selection process that captures
both the importance of channels and their computational
and memory cost. Then, at run time, we propose a dynamic
layer/channel selection scheme that dynamically adapts
the sparse update policy using our multi-objective criterion.
As TinyTrain takes into account both the properties of the
user data, and the memory and processing capacity of the
target device, TinyTrain enables on-device training with a
significant reduction in memory and computation without
accuracy loss over the state-of-the-art (SOTA) [31]. Fi-
nally, to further address the drawbacks of data scarcity, TinyTrain enhances the conventional on-device
training pipeline by means of a few-shot learning (FSL) pre-training scheme; this step meta-learns a
reasonable global representation that allows on-device training to be sample-efficient and reach high
accuracy despite the limited and cross-domain target data.

Figure 1 presents a comparison of our method’s performance with existing on-device training
approaches. TinyTrain achieves the highest accuracy, with gains of 3.6-5.0% over fine-tuning the
entire DNN, denoted by FullTrain. On the compute front, TinyTrain significantly reduces the memory
footprint and computation required for backward pass by up to 2,286× and 7.68×, respectively.
TinyTrain further outperforms the SOTA SparseUpdate method in all aspects, yielding: (a) 2.6-7.7%
accuracy gain across nine datasets; (b) 2.4-3.1× reduction in memory; and (c) 1.5-1.8× lower
computation costs. Finally, we demonstrate how our work makes important steps towards efficient
training on very constrained edge devices by deploying TinyTrain on Raspberry Pi Zero 2 and Jetson
Nano and showing that our multi-objective criterion can be efficiently computed within 20-35 seconds
on both of our target edge devices (i.e. 3.4-3.8% of the total training time of TinyTrain), removing
the necessity of offline search process of important layers and channels. Also, TinyTrain achieves
an end-to-end on-device training in 10 minutes, an order of magnitude speedup over the two-hour
training of FullTrain on Pi Zero 2. These findings open the door, for the first time, to performing
on-device training with acceptable performance on a variety of resource-constrained devices, such as
MCUs embedded in IoT frameworks.

2

Pre-trained

backbone

Train the selected

layers and channels

Rank the channels and layers based on

the multi-objective metric Si

Offline Pre-training Online Adaptive Learning on IoT Devices

Meta-training with generic data

(e.g. MiniImageNet)

Device Specific

Data Compute Memory

Si

Figure 2: The overview of TinyTrain. It consists of (1) offline pre-training and (2) online adaptive
learning stages. In (1), TinyTrain pre-trains and meta-trains DNNs to improve the attainable accuracy
when only a few data are available for adaptation. Then, in (2), TinyTrain performs task-adaptive
sparse-update based on the multi-objective criterion and dynamic layer/channel selection that co-
optimises both memory and computations.

2 Methodology

Problem Formulation. From a learning perspective, on-device DNN training at the extreme edge
imposes unique characteristics that the model needs to address during deployment, primarily: (1) un-
seen target tasks with different data distributions (cross-domain), and (2) scarce labelled user data. To
formally capture this setting, in this work, we cast it as a cross-domain few-shot learning (CDFSL)
problem. In particular, we formulate it as K-way-N-shot learning [54] which allows us to accommo-
date more general scenarios instead of optimising towards one specific CDFSL setup (e.g. 5-way
5-shots). This formulation requires us to learn a DNN for K classes given N samples per class. To
further push towards realistic scenarios, we learn one global DNN representation from various K and
N , which can be used to learn novel tasks (see §3.1 and §A.1 for details).

Our Pipeline. Figure 2 shows the processing flow of TinyTrain comprising two stages. The first
stage is offline learning. By means of pre-training and meta-training, TinyTrain aims to find an
informed weight initialisation, such that subsequently the model can be rapidly adapted to the user
data with only a few samples (5-30), drastically reducing the burden of manual labelling and the
overall training time compared to state of the art methods. The second stage is online learning. This
stage takes place on the target edge device, where TinyTrain utilises its task-adaptive sparse-update
method to selectively fine-tune the model using the limited user-specific, cross-domain target data,
while minimising the memory and compute overhead.

2.1 Few-Shot Learning-Based Pre-training

The vast majority of existing on-device training pipelines optimise certain aspects of the system
(i.e. memory or compute) via memory-saving techniques [6, 41, 58, 12] or fine-tuning a small set of
layers/channels [4, 31, 45, 28, 43]. However, these methods neglect the aspect of sample efficiency
in the low-data regime of tiny edge devices. As the availability of labelled data is severely limited at
the extreme edge, existing on-device training approaches suffer from insufficient learning capabilities
under such conditions.

In our work, we depart from the transfer-learning paradigm (i.e. DNN pre-training on source data,
followed by fine-tuning on target data) of existing on-device training methods that are unsuitable
to the very low data regime of edge devices. Building upon the insight of recent studies [17] that
transfer learning does not reach a model’s maximum capacity on unseen tasks in the presence of only
limited labelled data, we augment the offline stage of our training pipeline as follows. Starting from
the pre-training of the DNN backbone using a large-scale public dataset, we introduce a subsequent
meta-training process that meta-trains the pre-trained DNN given only a few samples (5-30) per class
on simulated tasks in an episodic fashion. As shown in §3.3, this approach enables the resulting
DNNs to perform more robustly and achieve higher accuracy when adapted to a target task despite the
low number of examples, matching the needs of tiny edge devices. As a result, our few-shot learning
(FSL)-based pre-training constitutes an important component to improve the attainable accuracy
when only a few data samples are used for adaptation, reducing the training time while improving data

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Layer Index

5
0
5

10
15
20
25
30

Ac
cu

ra
cy

 G
ai

n
(%

)

Update All Channels
Update 50% Channels

Update 25% Channels
Update 12.5% Channels

(a) Accuracy Gain

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Layer Index

10

0

10

20

30

40

Ac
cu

ra
cy

 G
ai

n
(%

)/

Pa
ra

m
s

Update All Channels
Update 50% Channels

Update 25% Channels
Update 12.5% Channels

(b) Accuracy Gain / Params

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Layer Index

0

50

100

150

200

Ac
cu

ra
cy

 G
ai

n
(%

)/

M
AC

s

Update All Channels
Update 50% Channels

Update 25% Channels
Update 12.5% Channels

(c) Accuracy Gain / MACs

Figure 3: Memory- and compute-aware analysis of MCUNet by updating four different channel ratios
on each layer. (a) Accuracy gain per layer is generally highest on the first layer of each block. (b)
Accuracy gain per parameter of each layer is higher on the second layer of each block, but it is not
a clear pattern. (c) Accuracy gain per MACs of each layer has peaked on the second layer of each
block. These observations show accuracy, memory footprint, and computes in a trade-off relation.

and computation efficiency. Thus, TinyTrain alleviates the drawbacks of current work, by explicitly
addressing the lack of labelled user data, and achieving faster training and lower accuracy loss.

Pre-training. For the backbones of our models, we employ feature extractors of different DNN
architectures as in §3.1. These feature backbones are pre-trained with a large-scale image dataset,
e.g. ImageNet [8].

Meta-training. For the meta-training phase, we employ the metric-based ProtoNet [50], which
has been demonstrated to be simple and effective as an FSL method. ProtoNet computes the class
centroids (i.e. prototypes) for a given support set and then performs nearest-centroid classification
using the query set. Specifically, given a pre-trained feature backbone f that maps inputs x to an
m-dimensional feature space, ProtoNet first computes the prototypes ck for each class k on the
support set as ck = 1

Nk

∑
i:yi=k f(xi), where Nk =

∑
i:yi=k 1 and y are the labels. The probability

of query set inputs x for each class k is then computed as:

p(y = k|x) = exp(−d(f(x), ck))∑
j exp(−d(f(x), cj))

(1)

We use cosine distance as the distance measure d similarly to Hu et al. [17]. Note that ProtoNet
enables the various-way-various-shot setting since the prototypes can be computed regardless of the
number of ways and shots. Then, the feature backbones are meta-trained with MiniImageNet [56], a
commonly used source dataset in CSFSL, to provide a weight initialisation that will be generalisable to
multiple downstream tasks in the subsequent online stage (see §F.1 for the meta-training cost analysis).

2.2 Task-Adaptive Sparse Update

Existing FSL pipelines generally focus on data and sample efficiency and attend less to system
optimisation [10, 50, 15, 54, 17], rendering most of these algorithms undeployable for the extreme
edge, due to high computational and memory costs. In this context, sparse update [31, 43], which
dictates that only a subset of essential layers and channels are to be trained, has emerged as a
promising paradigm for making training feasible on resource-constrained devices.

Two key design decisions of sparse-update methods are i) the scheme for determining the sparse-
update policy, i.e. which layers/channels should be fine-tuned, and ii) how often should the sparse-
update policy be modified. In this context, a SOTA method, such as SparseUpdate [31], is charac-
terised by important limitations. First, it casts the layer/channel selection as an optimisation problem
that aims to maximise the accuracy gain subject to the memory constraints of the target device.
However, as the optimisation problem is combinatorial, SparseUpdate solves it offline by means of a
heuristic evolutionary algorithm that requires a few thousand trials. Secondly, as the search process
for a good sparse-update policy is too expensive, it is practically infeasible to dynamically adjust the
sparse-update policy whenever new target datasets are given, leading to performance degradation.

Multi-Objective Criterion. With resource constraints being at the forefront in tiny edge devices, we
investigate the trade-offs among accuracy gain, compute and memory cost. To this end, we analyse
each layer’s contribution (i.e. accuracy gain) on the target dataset by updating a single layer at a time,

4

20 22 24 26 28 30 32 34 36 38 40
Layer Index

0

5

10

15

20

25

30

Ac
cu

ra
cy

 G
ai

n
(%

)

Fisher L2 Norm Random

(a) 50% channels selected

20 22 24 26 28 30 32 34 36 38 40
Layer Index

5

0

5

10

15

20

25

Ac
cu

ra
cy

 G
ai

n
(%

)

Fisher L2 Norm Random

(b) 25% channels selected

20 22 24 26 28 30 32 34 36 38 40
Layer Index

0

5

10

15

20

25

Ac
cu

ra
cy

 G
ai

n
(%

)

Fisher L2 Norm Random

(c) 12.5% channels selected

Figure 4: The pairwise comparison between our dynamic channel selection and static channel
selections (i.e. Random and L2-Norm) on MCUNet. The dynamic channel selection consistently
outperforms static channel selections as the accuracy gain per layer differs by up to 8%. Also, the gap
between dynamic and static channel selections increases as fewer channels are selected for updates.

together with cost-normalised metrics, including accuracy gain per parameter and per MAC operation
of each layer. Figure 3 shows the results of MCUNet [30] on the Traffic Sign [16] dataset (see §E.1
for more results). We make the following observations: (1) the peak point of accuracy gain occurs at
the first layer of each block (pointwise convolutional layer) (Figure 3a), (2) the accuracy gain per
parameter and computation cost occurs at the second layer of each block (depthwise convolutional
layer) (Figures 3b and 3c). These findings indicate a non-trivial trade-off between accuracy, memory,
and computation, demonstrating the necessity for an effective layer/channel selection method that
jointly considers all the aspects.

To encompass both accuracy and efficiency aspects, we design a multi-objective criterion for the
layer selection process of our task-adaptive sparse-update method. To quantify the importance of
channels and layers on the fly, we propose the use of Fisher information on activations [1, 53, 23],
often used to identify less important channels/layers for pruning [53, 55]. Whereas we use it as a
proxy for more important channels/layers for weight update. Formally, given N examples of target
inputs, the Fisher information ∆o can be calculated after backpropagating the loss L with respect to
activations a of a layer:

∆o =
1

2N

N∑
n

(

D∑
d

andgnd)
2 (2)

where gradient is denoted by gnd and D is feature dimension of each channel (e.g. D = H ×W of
height H and width W). We obtain the Fisher potential P for a whole layer by summing ∆o for all
activation channels as: P =

∑
o ∆o.

Having established the importance of channels in each layer, we define a new multi-objective metric
s that jointly captures importance, memory footprint and computational cost:

si =
Pi

∥Wi∥
max
l∈L

(∥Wl∥) ×
Mi

max
l∈L

(Ml)

(3)

where ∥Wi∥ and Mi represent the number of parameters and multiply-accumulate (MAC) operations
of the i-th layer and are normalised by the respective maximum values max

l∈L
(∥Wl∥) and max

l∈L
(Ml)

across all layers L of the model. This multi-objective metric enables TinyTrain to rank different layers
and prioritise the ones with higher Fisher potential per parameter and per MAC during layer selection.
Further, as TinyTrain obtains multi-objective metric efficiently by running backpropagation only once
for each target dataset, TinyTrain effectively alleviates the burdens of running the computationally
heavy search processes a few thousand times.

Dynamic Layer/Channel Selection. We now present our dynamic layer/channel selection scheme,
the second component of our task-adaptive sparse update, that runs at the online learning stage (i.e. de-
ployment and meta-testing phase). Concretely, with reference to Algorithm 1, when a new on-device
task needs to be learned (e.g. a new user or dataset), the sparse-update policy is modified to match its
properties (lines 1-4). Contrary to the existing layer/channel selection approaches that remain fixed
across tasks, our method is based on the key insight that different features/channels can play a more
important role depending on the target dataset/task/user. As shown in §3.3, effectively tailoring the

5

Algorithm 1: Online learning stage of TinyTrain
Require: Meta-trained backbone weights W , iterations k, Train data Dtrain, Test data Dtest,

memory and compute budgets Bmem, Bcompute
/* Dynamic layer/channel selection */

1 Compute the gradient using the given samples Dtrain
2 Compute the Fisher potential using Eq. (2) from the Fisher information
3 Compute our multi-objective metric s using Eq. (3)
4 Perform the dynamic layer & channel selection using {W, s,Bmem, Bcompute}
/* Perform sparse fine-tuning */

5 for t = 1, ..., k do
6 Update the selected layers/channels using Dtrain

7 Evaluate the fine-tuned backbone using Dtest

layer/channel selection to each task leads to superior accuracy compared to the pre-determined, static
layer selection scheme of SparseUpdate, while further minimising system overheads.

As an initialisation step, TinyTrain is first provided with the memory and computation budget
determined by hardware and users, e.g. 512 KB and 15% of total MACs can be given as backward-
pass memory and computational budget. Then, we calculate the Fisher potential for each convolutional
layer by performing backpropagation once using the given inputs of a target task (lines 1-2). Then,
based on our multi-objective criterion (Eq. (3)) (line 3), we score each layer and progressively select
as many layers as possible without violating the memory constraints (imposed by the peak memory
usage of the model, optimiser, and activations memory) and resource budgets (imposed by users and
target hardware) on an edge device (line 4).

After having selected layers, within each selected layer, we identify the top-K most important
channels to update using the Fisher information for each activation channel, ∆o, that was precomputed
during the initialisation step (line 4). Note that the overhead of our dynamic layer/channel selection is
minimal, which takes only 20-35 seconds on edge devices (more analysis in §3.2 and §3.3). Having
finalised the layer/channel selection, we proceed with their sparse fine-tuning of the meta-trained
DNN during meta-testing (see §C for detailed procedures). As in Figure 4 (MCUNet on Traffic Sign;
refer to §E.5 for more results), dynamically identifying important channels for an update for each
target task outperforms the static channel selections such as random- and L2-Norm-based selection.

Overall, the dynamic layer/channel selection scheme facilitates TinyTrain to achieve superior accuracy,
while further minimising the memory and computation cost by co-optimising both system constraints,
thereby enabling memory- and compute-efficient training at the extreme edge.

3 Evaluation

3.1 Experimental Setup

We briefly explain our experimental setup in this subsection (refer to §A for further details).

Datasets. We use MiniImageNet [56] as the meta-train dataset, following the same setting as prior
works on cross-domain FSL [17, 54, 13]. For meta-test datasets (i.e. target datasets of different
domains than the source dataset of MiniImageNet), we employ all nine out-of-domain datasets of
various domains from Meta-Dataset [54], excluding ImageNet because it is used to pre-train the
models before deployment, making it an in-domain dataset. Extensive experimental results with
nine different cross-domain datasets showcase the robustness and generality of our approach to the
challenging CDFSL problem.

Architectures. Following Lin et al. [31], we employ three DNN architectures: MCUNet [30],
MobileNetV2 [46], and ProxylessNAS [3]. These DNN models are pre-trained using ImageNet [8]
and optimised for resource-limited IoT devices by adjusting the width multiplier.

Evaluation. To evaluate the CDFSL performance, we sample 200 tasks from the test split for
each dataset. Then, we use testing accuracy on unseen samples of a new-domain target dataset.
Following Triantafillou et al. [54], the number of classes and support/query sets are sampled uniformly

6

Table 1: Top-1 accuracy results of TinyTrain and the baselines. TinyTrain achieves the highest
accuracy with three DNN architectures on nine cross-domain datasets.

Model Method Traffic Omniglot Aircraft Flower CUB DTD QDraw Fungi COCO Avg.

MCUNet

None 35.5 42.3 42.1 73.8 48.4 60.1 40.9 30.9 26.8 44.5
FullTrain 82.0 72.7 75.3 90.7 66.4 74.6 64.0 40.4 36.0 66.9
LastLayer 55.3 47.5 56.7 83.9 54.0 72.0 50.3 36.4 35.2 54.6
TinyTL 78.9 73.6 74.4 88.6 60.9 73.3 67.2 41.1 36.9 66.1
SparseUpdate 72.8 67.4 69.0 88.3 67.1 73.2 61.9 41.5 37.5 64.3

TinyTrain (Ours) 79.3 73.8 78.8 93.3 69.9 76.0 67.3 45.5 39.4 69.3
None 39.9 44.4 48.4 81.5 61.1 70.3 45.5 38.6 35.8 51.7
FullTrain 75.5 69.1 68.9 84.4 61.8 71.3 60.6 37.7 35.1 62.7

Mobile LastLayer 58.2 55.1 59.6 86.3 61.8 72.2 53.3 39.8 36.7 58.1
NetV2 TinyTL 71.3 69.0 68.1 85.9 57.2 70.9 62.5 38.2 36.3 62.1

SparseUpdate 77.3 69.1 72.4 87.3 62.5 71.1 61.8 38.8 35.8 64.0

TinyTrain (Ours) 77.4 68.1 74.1 91.6 64.3 74.9 60.6 40.8 39.1 65.6
None 42.6 50.5 41.4 80.5 53.2 69.1 47.3 36.4 38.6 51.1
FullTrain 78.4 73.3 71.4 86.3 64.5 71.7 63.8 38.9 37.2 65.0

Proxyless LastLayer 57.1 58.8 52.7 85.5 56.1 72.9 53.0 38.6 38.7 57.0
NASNet TinyTL 72.5 73.6 70.3 86.2 57.4 71.0 65.8 38.6 37.6 63.7

SparseUpdate 76.0 72.4 71.2 87.8 62.1 71.7 64.1 39.6 37.1 64.7

TinyTrain (Ours) 79.0 71.9 76.7 92.7 67.4 76.0 65.9 43.4 41.6 68.3

at random regarding the dataset specifications. On the computational front, we present the computation
cost in MAC operations and the peak memory footprint (i.e. the memory of the model parameters,
optimisers and activations). We further measure latency and energy consumption when running
end-to-end DNN training on actual edge devices.

Baselines. We compare TinyTrain with the following five baselines: (1) None does not perform
any on-device training; (2) FullTrain [38] fine-tunes the entire model, representing a conventional
transfer-learning approach; (3) LastLayer [45, 28] updates the last layer only; (4) TinyTL [4] up-
dates the augmented lite-residual modules while freezing the backbone; and (5) SparseUpdate of
MCUNetV3 [31], is a prior state-of-the-art (SOTA) method for on-device training that statically
pre-determines which layers and channels to update before deployment and then updates them online.

3.2 Main Results

Table 2: Comparison of the memory footprint and
computation costs for a backward pass between
TinyTrain and the baselines.

Model Method Memory Ratio Compute Ratio

MCUNet

FullTrain 950 MB 1,872× 44.9M 6.89×
LastLayer 1.14 MB 2.3× 1.57M 0.23×
TinyTL 569 MB 1,120× 26.4M 4.05×
SparseUpdate 1.21 MB 2.4× 11.9M 1.82×
TinyTrain (Ours) 0.51 MB 1× 6.51M 1×
FullTrain 1,100 MB 2,286× 34.9M 7.12×

Mobile LastLayer 0.61 MB 1.3× 0.80M 0.16×
NetV2 TinyTL 615 MB 1,279× 16.4M 3.35×

SparseUpdate 1.47 MB 3.1× 8.10M 1.65×
TinyTrain (Ours) 0.48 MB 1× 4.90M 1×
FullTrain 899 MB 1,925× 38.4M 7.68×

Proxyless LastLayer 0.45 MB 0.96× 0.59M 0.12×
NASNet TinyTL 567 MB 1,214× 17.8M 3.57×

SparseUpdate 1.34 MB 2.9× 7.60M 1.52×
TinyTrain (Ours) 0.47 MB 1× 5.00M 1×

Accuracy. Table 1 summarises accuracy results
of TinyTrain and various baselines after adapt-
ing to cross-domain target datasets, averaged
over 200 runs. We first observe that None at-
tains the lowest accuracy among all baselines
across all experiments, demonstrating the impor-
tance of on-device training when domain shift in
train-test data distribution is present. LastLayer
improves upon None with a marginal accuracy
increase, suggesting that updating the last layer
is insufficient to achieve high accuracy in cross-
domain scenarios, likely due to final layer limits
in the capacity. In addition, FullTrain, serving
as a strong baseline as it assumes unlimited sys-
tem resources, achieves high accuracy. TinyTL
also yields moderate accuracy. However, as both
FullTrain and TinyTL require prohibitively large
memory and computation for training, they remain unsuitable to operate on resource-constrained
devices, as shown below.

TinyTrain achieves the best accuracy on most datasets and the highest average accuracy across them,
outperforming all the baselines including FullTrain, LastLayer, TinyTL, and SparseUpdate by 3.6-5.0
percentage points (pp), 13.0-26.9 pp, 4.8-7.2 pp, and 2.6-7.7 pp, respectively. This result indicates
that our approach of identifying important parameters on the fly in a task-adaptive manner and
updating them could be more effective in preventing overfitting given the few samples of CDFSL.

7

Memory and Compute. We investigate the memory and computation costs of on-device training by
examining each method and DNN architecture. Table 2 shows how much additional memory and
computation are required to perform training (backward pass) on top of inference (forward pass). We
focus on the backward pass, as the objective of our work is to reduce the cost of the backward pass,
which takes up the majority of the memory footprint of training [51]. Memory and computation of a
forward pass can vary depending on the execution scheduling (e.g. patch-based inference).

We first observe that FullTrain and TinyTL consume significant amounts of memory, ranging between
899-1,100 MB and 567-615 MB, respectively, i.e. up to 2,286× and 1,279× more than TinyTrain,
which exceeds the typical RAM size of IoT devices, such as Pi Zero (e.g. 512 MB). Note that a batch
size of 100 is used for these two baselines as their accuracy degrades catastrophically with smaller
batch sizes. Conversely, the other methods, including LastLayer, SparseUpdate, and TinyTrain, use a
batch size of 1 and yield a smaller memory footprint and computational cost. Importantly, compared to
SparseUpdate, TinyTrain enables on-device training with 2.4-3.1× less memory and 1.52-1.82× less
computation. This gain can be attributed to the multi-objective criterion of TinyTrain’s sparse-update
method, which co-optimises both memory and computation.

MCUNet MobileNetV2 ProxylessNASNet
Architecture

0

1

2

3

4

5

E
ne

rg
y

C
on

su
m

pt
io

n
(k

J)

4.4

5.0

3.6

1.0 0.9 1.0

2.3 2.3
2.0

1.3 1.4 1.4
1.2 1.2 1.3

FullTrain LastLayer TinyTL SparseUpdate TinyTrain

������ ����������� ���� ����������
��	�
�
	���

�

��

	�

��

�

���
��
�

�

��
��

�

�
��

�
��

�
�

����

��	��

�
��

��� ��� ���

	��	 	
��
	���

���� ���� ���
��� ��� ����

9.9x

smaller

11.2x

smaller

7.5x

smaller

(b) Training Time

������ ����������� ����������
����
��

���
����

�

�

�

�

	

�
��
��
��
�
��
��
�
��
��
��
��
	�

	�	

��

���

��� ��� ���

��� ���
���

��� ��	 ��	
��� ��� ���

3.7x

smaller

4.2x

smaller

2.8x

smaller

(c) Energy Consumption

Figure 5: End-to-end latency and energy consumption
of the on-device training methods on three architectures.

End-to-End Latency and Energy Con-
sumption. We now examine the run-time
system efficiency by measuring TinyTrain’s
end-to-end training time and energy con-
sumption, as shown in Figure 5. To this
end, we deploy TinyTrain and the base-
lines on constrained edge devices, Pi Zero
2 and Jetson Nano. To measure the overall
training cost, we include the time and en-
ergy consumption: (1) to load a pre-trained
model, and (2) to perform training using all
the samples (e.g. 25) for a certain number
of iterations (e.g. 40), and (3) to perform
dynamic layer/channel selection for task-
adaptive sparse update (only for TinyTrain).

TinyTrain yields 1.08-1.12× and 1.3-1.7× faster on-device training than SOTA on Pi Zero 2 and
Jetson Nano, respectively. Also, TinyTrain completes an end-to-end on-device training process
within 10 minutes, an order of magnitude speedup over the two-hour training of conventional transfer
learning, a.k.a. FullTrain on Pi Zero 2. Moreover, the latency of TinyTrain is shorter than all the
baselines except for that of LastLayer which only updates the last layer but suffers from high accuracy
loss. In addition, TinyTrain shows a significant reduction in the energy consumption (incurring
1.20-1.31kJ) compared to all the baselines, except for LastLayer, similarly to the latency results.

Summary. Our results demonstrate that TinyTrain can effectively learn cross-domain tasks requiring
only a few samples, i.e. it generalises well to new samples and classes unseen during the offline
learning phase. Furthermore, TinyTrain enables fast and energy-efficient on-device training on
constrained IoT devices with significantly reduced memory footprint and computational load.

3.3 Ablation Study and Analysis

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

30

40

50

60

70

80

To
p-

1
A

cc
ur

ac
y

44.5

66.9

54.6

66.1
64.3 65.6

58.7

67.3

60.7

68.6 68.9 69.3

w/o meta-training w/ meta-training

(a) Meta-training

��� ��� ��� ��� �	�

���!��������������"���
�

�

�

��

��
��
��
	
��
 �
��
"

������
������ ������

2.1 pp

higher acc

2.5 pp

higher acc

1.9 pp

higher acc

(b) Dynamic Channel Selection

Figure 6: The effect of (a) meta-training and (b) dy-
namic channel selection using MCUNet averaged over
nine cross-domain datasets.

Impact of Meta-Training. We com-
pare the accuracy between pre-trained
DNNs with and without meta-training us-
ing MCUNet. Figure 6a shows that meta-
training improves the accuracy by 0.6-31.8
pp over the DNNs without meta-training
across all the methods (see §E.4 for more
results). For TinyTrain, meta-training in-
creases accuracy by 5.6 pp on average. This
result shows the impact of meta-training
compared to conventional transfer learn-
ing, demonstrating the effectiveness of our
FSL-based pre-training (§2.1).

8

Robustness of Dynamic Channel Selection. We compare the accuracy of TinyTrain with and without
dynamic channel selection, with the same set of layers to be updated within strict memory constraints
using MCUNet. This comparison shows how much improvement is derived from dynamically
selecting important channels based on our method at deployment time. Figure 6b shows that dynamic
channel selection increases accuracy by 0.8-1.7 pp and 1.9-2.5 pp on average compared to static
channel selection based on L2-Norm and Random, respectively (see §E.5 for more results). In
addition, given a more limited memory budget, our dynamic channel selection maintains higher
accuracy than static channel selection. Our ablation study reveals the robustness of the dynamic
channel selection of our task-adaptive sparse-update (§2.2).

Efficiency of Task-Adaptive Sparse Update. Our dynamic layer/channel selection process takes
around 20-35 seconds on our employed edge devices (i.e. Pi Zero 2 and Jetson Nano), accounting
for only 3.4-3.8% of the total training time of TinyTrain. Note that our selection process is 30×
faster than SparseUpdate’s server-based evolutionary search, taking 10 minutes with abundant offline
compute resources. This demonstrates the efficiency of our task-adaptive sparse update.

4 Related Work

On-Device Training. Driven by the increasing privacy concerns and the need for post-deployment
adaptability to new tasks/users, the research community has recently turned its attention to enabling
DNN training (i.e., backpropagation having forward and backward passes, and weights update) at the
edge. First, researchers proposed memory-saving techniques to resolve the memory constraints of
training [51, 5, 39, 9, 34]. For example, gradient checkpointing [6, 21, 24] discards activations of some
layers in the forward pass and recomputes those activations in the backward pass. Microbatching [19]
splits a minibatch into smaller subsets that are processed iteratively, to reduce the peak memory needs.
Swapping [18, 57, 60] offloads activations or weights to an external memory/storage (e.g. from GPU
to CPU or from an MCU to an SD card). Some works [41, 58, 12] proposed a hybrid approach by
combining two or three memory-saving techniques. Although these methods reduce the memory
footprint, they incur additional computation overhead on top of the already prohibitively expensive
on-device training time at the edge. Instead, our work drastically minimises not only memory but
also the amount of computation through its dynamic sparse update that identifies and trains on-the-fly
only the most important layers/channels.

A few existing works [31, 4, 43] have also attempted to optimise both memory and computations,
with prominent examples being TinyTL [4] and SparseUpdate [31]. However, TinyTL still demands
excessive memory and computation (see §3.2). SparseUpdate suffers from accuracy loss, with a
drop of 2.6-7.7% compared to TinyTrain) when on-device data are scarce, as at the extreme edge. In
contrast, TinyTrain enables data-, compute-, and memory-efficient training on tiny edge devices by
adopting FSL pre-training and dynamic layer/channel selection.

Cross-Domain Few-Shot Learning. Due to the scarcity of labelled user data on the device, de-
veloping Few-Shot Learning (FSL) techniques [15, 10, 2, 29, 50, 52, 47, 62] is a natural fit for
on-device training. Also, a growing body of work focuses on cross-domain (out-of-domain) FSL
(CDFSL) [13, 17, 54] where the source (meta-train) dataset drastically differs from the target (meta-
test) dataset. CDFSL is practically relevant since in real-world deployment scenarios, the scarcely
annotated target data (e.g. earth observation images [13, 54]) is often significantly different from the
offline source data (e.g. (Mini-)ImageNet [56]). However, FSL-based methods only consider data
efficiency, neglecting the memory and computation bottlenecks of on-device training. We explore
joint optimisation of all the major bottlenecks of on-device training: data, memory, and computation.

5 Conclusion

We have developed the first realistic on-device training framework, TinyTrain, solving practical
challenges in terms of data, memory, and compute constraints for extreme edge devices. TinyTrain
meta-learns in a few-shot fashion during the offline learning stage and dynamically selects important
layers and channels to update during deployment. As a result, TinyTrain outperforms all existing
on-device training approaches by a large margin enabling, for the first time, fully on-device training
on unseen tasks at the extreme edge. It allows applications to generalise to cross-domain tasks using
only a few samples and adapt to the dynamics of the user devices and context.

9

Limitations & Societal Impacts. Our evaluation is currently limited to CNN-based architectures on
vision tasks. As future work, we hope to extend TinyTrain to different architectures (e.g. Transformers,
RNNs) and applications (e.g. audio or biological data). In addition, while on-device training avoids
the excessive electricity consumption and carbon emissions of centralised training [49, 42], it has thus
far been a significantly draining process for the battery life of edge devices. Nevertheless, TinyTrain
paves the way towards alleviating this issue as demonstrated in Figure 5c.

References
[1] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):

251–276, 1998.

[2] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML. September
2018. URL https://openreview.net/forum?id=HJGven05Y7.

[3] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct Neural Architecture Search on
Target Task and Hardware. In International Conference on Learning Representations (ICLR),
2019.

[4] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. TinyTL: Reduce Memory, Not Parameters
for Efficient On-Device Learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[5] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W Mahoney,
and Joseph E Gonzalez. ActNN: Reducing Training Memory Footprint via 2-Bit Activation
Compressed Training. In International Conference on Machine Learning (ICML), 2021.

[6] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training Deep Nets with Sublinear
Memory Cost, 2016. URL https://arxiv.org/abs/1604.06174.

[7] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing Textures in the Wild. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009.

[9] R David Evans and Tor Aamodt. AC-GC: Lossy Activation Compression with Guaranteed
Convergence. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. In International Conference on Machine Learning (ICML),
2017.

[11] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue, Peter Jin, Sicheng Zhao,
and Kurt Keutzer. SqueezeNext: Hardware-Aware Neural Network Design. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[12] In Gim and JeongGil Ko. Memory-Efficient DNN Training on Mobile Devices. In Annual
International Conference on Mobile Systems, Applications and Services (MobiSys), 2022.

[13] Yunhui Guo, Noel C. Codella, Leonid Karlinsky, James V. Codella, John R. Smith, Kate Saenko,
Tajana Rosing, and Rogerio Feris. A Broader Study of Cross-Domain Few-Shot Learning. In
European Conference on Computer Vision (ECCV), 2020.

[14] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. In International Conference
on Learning Representations (ICLR), 2016.

[15] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-Learning in
Neural Networks: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 44(9):5149–5169, 2022.

10

https://openreview.net/forum?id=HJGven05Y7
https://arxiv.org/abs/1604.06174

[16] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. De-
tection of Traffic Signs in Real-World Images: The German Traffic Sign Detection Benchmark.
In International Joint Conference on Neural Networks (IJCNN), 2013.

[17] Shell Xu Hu, Da Li, Jan Stühmer, Minyoung Kim, and Timothy M. Hospedales. Pushing the
limits of simple pipelines for few-shot learning: External data and fine-tuning make a difference.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[18] Chien-Chin Huang, Gu Jin, and Jinyang Li. SwapAdvisor: Pushing Deep Learning Beyond
the GPU Memory Limit via Smart Swapping. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2020.

[19] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen,
HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. GPipe: Efficient
Training of Giant Neural Networks Using Pipeline Parallelism. In International Conference on
Neural Information Processing Systems (NeurIPS), 2019.

[20] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and Training of Neural Networks
for Efficient Integer-Arithmetic-Only Inference. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[21] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez,
Kurt Keutzer, and Ion Stoica. Checkmate: Breaking the Memory Wall with Optimal Tensor
Rematerialization. In Conference on Machine Learning and Systems (MLSys), 2020.

[22] Jonas Jongejan, Henry Rowley, Takashi Kawashima, Jongmin Kim, and Nick Fox-Gieg. The
quick, draw!-ai experiment. Mount View, CA, accessed Feb, 17(2018):4, 2016.

[23] Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher SAM: Information Geom-
etry and Sharpness Aware Minimisation. In International Conference on Machine Learning
(ICML), 2022.

[24] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch,
Tianqi Chen, and Zachary Tatlock. Dynamic Tensor Rematerialization. In International
Conference on Learning Representations (ICLR), 2021.

[25] Raghuraman Krishnamoorthi. Quantizing Deep Convolutional Networks for Efficient Inference:
A Whitepaper. arXiv:1806.08342 [cs, stat], 2018.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[27] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level Concept
Learning through Probabilistic Program Induction. Science, 350(6266):1332–1338, 2015.

[28] Seulki Lee and Shahriar Nirjon. Learning in the Wild: When, How, and What to Learn for On-
Device Dataset Adaptation. In International Workshop on Challenges in Artificial Intelligence
and Machine Learning for Internet of Things (AIChallengeIoT), 2020.

[29] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to Learn Quickly for
Few-Shot Learning. arXiv:1707.09835 [cs], 2017.

[30] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. MCUNet:
Tiny Deep Learning on IoT Devices. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[31] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-Device
Training Under 256KB Memory. In Advances on Neural Information Processing Systems
(NeurIPS), 2022.

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In
European Conference on Computer Vision (ECCV), 2014.

11

[33] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian Tang, and Jieping Ye. AutoCompress:
An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates. AAAI
Conference on Artificial Intelligence (AAAI), 2020.

[34] Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen,
Zhiyuan Liu, Jie Tang, Joey Gonzalez, Michael Mahoney, and Alvin Cheung. GACT: Activation
Compressed Training for Generic Network Architectures. In International Conference on
Machine Learning (ICML), 2022.

[35] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design. In European Conference on Computer
Vision (ECCV), 2018.

[36] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. CoRR, abs/1306.5151, 2013. URL http://arxiv.
org/abs/1306.5151.

[37] Maria-Elena Nilsback and Andrew Zisserman. Automated Flower Classification over a Large
Number of Classes. In Indian Conference on Computer Vision, Graphics & Image Processing
(ICVGIP), 2008.

[38] Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 22(10):1345–1359, 2010.

[39] Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai, and Bohan Zhuang. Mesa: A
Memory-saving Training Framework for Transformers. arXiv preprint arXiv:2111.11124, 2021.

[40] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.
Continual Lifelong Learning with Neural Networks: A Review. Neural Networks, 113:54–71,
2019.

[41] Shishir G Patil, Paras Jain, Prabal Dutta, Ion Stoica, and Joseph Gonzalez. POET: Training
Neural Networks on Tiny Devices with Integrated Rematerialization and Paging. In International
Conference on Machine Learning (ICML), 2022.

[42] David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David R So, Maud Texier, and Jeff Dean. The Carbon Footprint of Machine
Learning Training Will Plateau, Then Shrink. Computer, 2022.

[43] Christos Profentzas, Magnus Almgren, and Olaf Landsiedel. MiniLearn: On-Device Learning
for Low-Power IoT Devices. In International Conference on Embedded Wireless Systems and
Networks (EWSN, 2022.

[44] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: Ima-
geNet Classification Using Binary Convolutional Neural Networks. In European Conference on
Computer Vision (ECCV), 2016.

[45] Haoyu Ren, Darko Anicic, and Thomas A. Runkler. TinyOL: TinyML with Online-Learning on
Microcontrollers. In International Joint Conference on Neural Networks (IJCNN), 2021.

[46] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
MobileNetV2: Inverted Residuals and Linear Bottlenecks. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[47] Victor Garcia Satorras and Joan Bruna Estrach. Few-Shot Learning with Graph Neural Networks.
In International Conference on Learning Representations (ICLR), 2018.

[48] Brigit Schroeder and Yin Cui. Fgvcx fungi classification challenge 2018. Available online:
github.com/visipedia/fgvcx_fungi_comp (accessed on 14 July 2021), 2018.

[49] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. Commun. ACM, 63
(12):54–63, 2020.

[50] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical Networks for Few-shot Learning.
In Advances in Neural Information Processing Systems (NeurIPS). 2017.

12

http://arxiv.org/abs/1306.5151
http://arxiv.org/abs/1306.5151

[51] Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski, Jian Zhang, and
Christopher Ré. Low-Memory Neural Network Training: A Technical Report. arXiv, 2019.

[52] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M. Hospedales.
Learning to Compare: Relation Network for Few-Shot Learning. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[53] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster Gaze Prediction
with Dense Networks and Fisher Pruning. arXiv, 2018.

[54] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu,
Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle.
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples. In International
Conference on Learning Representations (ICLR), 2020.

[55] Jack Turner, Elliot J Crowley, Michael O’Boyle, Amos Storkey, and Gavin Gray. BlockSwap:
Fisher-guided Block Substitution for Network Compression on a Budget. In International
Conference on Learning Representations (ICLR), 2020.

[56] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and Daan Wierstra.
Matching Networks for One Shot Learning. In Advances in Neural Information Processing
Systems (NeurIPS). 2016.

[57] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin
Xu, and Tim Kraska. SuperNeurons: Dynamic GPU Memory Management for Training Deep
Neural Networks. ACM SIGPLAN Notices, 53(1), 2018.

[58] Qipeng Wang, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan, Xin Jin, Gang Huang,
Yunxin Liu, and Xuanzhe Liu. Melon: Breaking the Memory Wall for Resource-Efficient On-
Device Machine Learning. In Annual International Conference on Mobile Systems, Applications
and Services (MobiSys), 2022.

[59] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-ucsd
birds-200-2011 dataset. Technical Report Technical Report CNS-TR-2011-001, California
Institute of Technology, 2011.

[60] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-Art
Natural Language Processing. In Conference on Empirical Methods in Natural Language
Processing: System Demonstrations (EMNLP), 2020.

[61] Daliang Xu, Mengwei Xu, Qipeng Wang, Shangguang Wang, Yun Ma, Kang Huang, Gang
Huang, Xin Jin, and Xuanzhe Liu. Mandheling: Mixed-Precision On-Device DNN Training with
DSP Offloading. In Annual International Conference on Mobile Computing And Networking
(MobiCom), 2022.

[62] Xueting Zhang, Debin Meng, Henry Gouk, and Timothy M. Hospedales. Shallow Bayesian
Meta Learning for Real-World Few-Shot Recognition. In IEEE/CVF International Conference
on Computer Vision (ICCV), 2021.

13

Supplementary Material
TinyTrain: Deep Neural Network Training at the Extreme Edge

Table of Contents
A Detailed Experimental Setup 15

A.1 Datasets . 15
A.2 Model Architectures . 15
A.3 Training Details . 16
A.4 Details for Evaluation Setup . 16
A.5 Baselines . 16

B Details of Sampling Algorithm during Meta-Testing 17
B.1 Sampling Algorithm during Meta-Testing . 17
B.2 Sample Statistics during Meta-Testing . 17

C Fine-tuning Procedure during Meta-Testing 18

D System Implementation 18

E Additional Results 19
E.1 Memory- and Compute-aware Analysis . 19
E.2 Pairwise Comparison among Different Channel Selection Schemes 19
E.3 End-to-End Latency Breakdown of TinyTrain and SparseUpdate 20
E.4 Impact of Meta-Training . 20
E.5 Robustness of Dynamic Channel Selection . 21

F Further Analysis and Discussion 28
F.1 Cost of Meta-Training . 28

G Extended Related Work 28
G.1 On-Device Training . 28
G.2 Few-Shot Learning . 28

14

A Detailed Experimental Setup

This section provides additional information on the experimental setup.

A.1 Datasets

Following the conventional setup for evaluating cross-domain FSL performances on MetaDataset in
prior arts [17, 54, 13], we use MiniImageNet [56] for Meta-Train and the non-ILSVRC datasets in
MetaDataset [54] for Meta-Test. Specifically, MiniImageNet contains 100 classes from ImageNet-
1k, split into 64 training, 16 validation, and 20 testing classes. The resolution of the images is
downsampled to 84×84. The MetaDataset used as Meta-Test datasets consists of nine public
image datasets from a variety of domains, namely Traffic Sign [16], Omniglot [27], Aircraft [36],
Flowers [37], CUB [59], DTD [7], QDraw [22], Fungi [48], and COCO [32]. Note that the ImageNet
dataset is excluded as it is already used for pre-training the models during the meta-training phase,
which makes it an in-domain dataset. We showcase the robustness and generality of our approach to
the challenging cross-domain few-shot learning (CDFSL) problem via extensive evaluation of these
datasets. The details of each target dataset employed in our study are described below.

The Traffic Sign [16] dataset consists of 50,000 images out of 43 classes regarding German road
signs.

The Omniglot [27] dataset has 1,623 handwritten characters (i.e. classes) from 50 different alphabets.
Each class contains 20 examples.

The Aircraft [36] dataset contains images of 102 model variants with 100 images per class.

The VGG Flowers (Flower) [37] dataset is comprised of natural images of 102 flower categories.
The number of images in each class ranges from 40 to 258.

The CUB-200-2011 (CUB) [59] dataset is based on the fine-grained classification of 200 different
bird species.

The Describable Textures (DTD) [7] dataset comprises 5,640 images organised according to a list
of 47 texture categories (classes) inspired by human perception.

The Quick Draw (QDraw) [22] is a dataset consisting of 50 million black-and-white drawings of
345 categories (classes), contributed by players of the game Quick, Draw!

The Fungi [48] dataset is comprised of around 100K images of 1,394 wild mushroom species, each
forming a class.

The MSCOCO (COCO) [32] dataset is the train2017 split of the COCO dataset. COCO contains
images from Flickr with 1.5 million object instances of 80 classes.

A.2 Model Architectures

Following [31], we employ optimised DNN architectures designed to be used in resource-limited
IoT devices, including MCUNet [30], MobileNetV2 [46], and ProxylessNASNet [3]. The DNN
models are pre-trained using ImageNet [8]. Specifically, the backbones of MCUNet (using the 5FPS
ImageNet model), MobileNetV2 (with the 0.35 width multiplier), and ProxylessNAS (with a width
multiplier of 0.3) have 23M, 17M, 19M MACs and 0.48M, 0.25M, 0.33M parameters, respectively.
Note that MACs are calculated based on an input resolution of 128 × 128 with an input channel
dimension of 3. The basic statistics of the three DNN architectures are summarised in Table 3.

Table 3: The statistics of our employed DNN architectures.
Model Param MAC # Layers # Blocks
MCUNet 0.46M 22.5M 42 13
MobileNetV2 0.29M 17.4M 52 17
ProxylessNASNet 0.36M 19.2M 61 20

15

A.3 Training Details

We adopt a common training strategy to meta-train the pre-trained DNN backbones, which helps
us avoid over-engineering the training process for each dataset and architecture [17]. Specifically,
we meta-train the backbone for 100 epochs. Each epoch has 2000 episodes/tasks. A warm-up and
learning rate scheduling with cosine annealing are used. The learning rate increases from 10−6 to
5× 10−5 in 5 epochs. Then, it decreases to 10−6. We use SGD with momentum as an optimiser.

A.4 Details for Evaluation Setup

To evaluate the cross-domain few-shot classification performance, we sample 200 different tasks
from the test split for each dataset. Then, as key performance metrics, we first use testing accuracy
on unseen samples of a new domain as the target dataset. Note that the number of classes and
support/query sets are sampled uniformly at random based on the dataset specifications. In addition,
we analytically calculate the computation cost and memory footprint required for the forward pass
and backward pass (i.e. model parameters, optimisers, activations). More specifically, for the memory
footprint for the backward pass, we include (1) model memory for the weights to be updated,
(2) optimiser memory for gradients, and (3) activations memory for intermediate outputs for weights
update. Also, we measure latency and energy consumption to perform end-to-end training of a
deployed DNN on the edge device. We deploy TinyTrain and the baselines on a tiny edge device,
Pi Zero. To measure the end-to-end training time and energy consumption, we include the time and
energy used to: (1) load a pre-trained model, (2) perform training using all the samples (e.g. 25) for a
certain number of iterations (e.g. 40). For TinyTrain, we also include the time and energy to conduct a
dynamic layer/ channel selection based on our proposed importance metric, by computing the Fisher
information on top of those to load a model and fine-tune it. Regarding energy, we measure the total
amount of energy consumed by a device during the end-to-end training process. This is performed by
measuring the power consumption on Pi Zero using a YOTINO USB power meter and deriving the
energy consumption following the equation: Energy = Power × Time.

A.5 Baselines

We include the following baselines in our experiments to evaluate the effectiveness of TinyTrain.

None. This baseline does not perform any on-device training during deployment. Hence, it shows the
accuracy drops of the DNNs when the model encounters a new task of a cross-domain dataset.

FullTrain. This method trains the entire backbone, serving as the strong baseline in terms of accuracy
performance, as it utilises all the required resources without system constraints. However, this method
intrinsically consumes the largest amount of system resources in terms of memory and computation
among all baselines.

LastLayer. This refers to adapting only the head (i.e. the last layer or classifier), which requires
relatively small memory footprint and computation. However, its accuracy typically is too low to be
practical. Prior works [45, 28] adopt this method to update the last layer only for on-device training.

TinyTL [4]. This method proposes to add a small convolutional block, named the lite-residual
module, to each convolutional block of the backbone network. During training, TinyTL updates
the lite-residual modules while freezing the original backbone, requiring less memory and fewer
computations than training the entire backbone. As shown in our results, TinyTrain requires the
second largest amount of memory and compute resources among all baselines.

SparseUpdate [31]. This method reduces the memory footprint and computation in performing
on-device training. Memory reduction comes from updating selected layers in the network, followed
by another selection of channels within the selected layers. However, SparseUpdate adopts a static
channel and layer selection policy that relies on evolutionary search (ES). This ES-based selection
scheme requires compute and memory resources that the extreme-edge devices can not afford. Even
in the offline compute setting, it takes around 10 mins to complete the search.

16

B Details of Sampling Algorithm during Meta-Testing

B.1 Sampling Algorithm during Meta-Testing

We now describe the sampling algorithm during meta-testing that produces realistically imbalanced
episodes of various ways and shots (i.e. K-way-N-shot), following Triantafillou et al. [54]. The
sampling algorithm is designed to accommodate realistic deployment scenarios by supporting the
various-way-various-shot setting. Given a data split (e.g. train, validation, or test split) of the dataset,
the overall procedure of the sampling algorithm is as follows: (1) sample of a set of classes C and
(2) sample support and query examples from C.

Sampling a set of classes. First of all, we sample a certain number of classes from the given split of a
dataset. The ‘way’ is sampled uniformly from the pre-defined range [5, MAX], where MAX indicates
either the maximum number of classes or 50. Then, ‘way’ many classes are sampled uniformly at
random from the given split of the dataset. For datasets with a known class organisation, such as
ImageNet and Omniglot, the class sampling algorithm differs as described in [54].

Sampling support and query examples. Having selected a set of classes, we sample support and
query examples by following the principle that aims to simulate realistic scenarios with limited
(i.e. few-shot) and imbalanced (i.e. realistic) support set sizes as well as to achieve a fair evaluation
of our system via query set.

• Support Set Size. Based on the selected set of classes from the first step (i.e. sampling a set
of classes), the support set is at most 100 (excluding the query set described below). The
support set size is at least one so that every class has at least one image. The sum of support
set sizes across all the classes is capped at 500 examples as we want to consider few-shot
learning (FSL) in the problem formulation.

• Shot of each class. After having determined the support set size, we now obtain the ‘shot’
of each class.

• Query Set Size. We sample a class-balanced query set as we aim to perform well on all
classes of samples. The number of minimum query sets is capped at 10 images per class.

B.2 Sample Statistics during Meta-Testing

In this subsection, we present summary statistics regarding the support and query sets based on the
sampling algorithm described above in our experiments. In our evaluation, we conducted 200 trials
of experiments (200 sets of support and query samples) for each target dataset. Table 4 shows the
average (Avg.) number of ways, samples, and shots of each dataset as well as their standard deviations
(SD), demonstrating that the sampled target data are designed to be the challenging and realistic
various-way-various-shot CDFSL problem. Also, as our system performs well on such challenging
problems, we demonstrate the effectiveness of our system.

Table 4: The summary statistics of the support and query sets sampled from nine cross-domain
datasets.

Traffic Omniglot Aircraft Flower CUB DTD QDraw Fungi COCO
Avg. Num of Ways 22.5 19.3 9.96 9.5 15.6 6.2 27.3 27.2 21.8
Avg. Num of Samples (Support Set) 445.9 93.7 369.4 287.8 296.3 324.0 460.0 354.7 424.1
Avg. Num of Samples (Query Set) 224.8 193.4 99.6 95.0 156.4 61.8 273.0 105.5 217.8
Avg. Num of Shots (Support Set) 29.0 4.6 38.8 30.7 20.7 53.3 23.6 15.6 27.9
Avg. Num of Shots (Query Set) 10 10 10 10 10 10 10 10 10

SD of Num of Ways 11.8 10.8 3.4 3.1 6.6 0.8 13.2 14.4 11.5
SD of Num of Samples (Support Set) 90.6 81.2 135.9 159.3 152.4 148.7 94.8 158.7 104.9
SD of Num of Samples (Query Set) 117.7 108.1 34.4 30.7 65.9 8.2 132.4 51.8 114.8
SD of Num of Shots (Support Set) 21.9 2.4 14.9 14.9 10.5 24.5 17.0 8.9 20.7
SD of Num of Shots (Query Set) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Num of Trials 200 200 200 200 200 200 200 200 200

17

C Fine-tuning Procedure during Meta-Testing

As we tackle realistic and challenging scenarios of the cross-domain few-shot learning (CDFSL)
problem, the pre-trained DNNs can encounter a target dataset drawn from an unseen domain, where
the pre-trained DNNs could fail to generalise due to a considerable shift in the data distribution.

Hence, to adjust to the target data distribution, we perform fine-tuning (on-device training) on the
pre-trained DNNs by a few gradient steps while leveraging the data augmentation (as explained
below). Specifically, the feature backbone as the DNNs is fine-tuned as our employed models are
based on ProtoNet.

Our fine-tuning procedure during the meta-testing phase is similar to that of [13, 17]. First of all, as
the support set is the only labelled data during meta-testing, prior work [13] fine-tunes the models
using only the support set. For [17], it first uses data augmentation with the given support set to create
a pseudo query set. After that, it uses the support set to generate prototypes and the pseudo query
set to perform backpropagation using Eq. 1. Differently from [13],the fine-tuning procedure of [17]
does not need to compute prototypes and gradients using the same support set using Eq. 1. However,
Hu et al. [17] simply fine-tune the entire DNNs without memory-and compute-efficient on-device
training techniques, which becomes one of our baselines, FullTrain requiring prohibitively large
memory footprint and computation costs to be done on-device during deployment. In our work, for all
the on-device training methods including TinyTrain, we adopt the fine-tuning procedure introduced in
[17]. However, we extend the vanilla fine-tuning procedure with existing on-device training methods
(i.e. LastLayer, TinyTL, SparseUpdate, which serve as the baselines of on-device training in our work)
so as to improve the efficiency of on-device training on the extremely resource-constrained devices.
Furthermore, our system, TinyTrain, not only extends the fine-tuning procedure with memory-and
compute-efficient on-device training but also proposes to leverage data-efficient FSL pretraining to
enable the first data-, memory-, and compute-efficient on-device training framework on edge devices.

D System Implementation

The offline component of our system is built on top of PyTorch (version 1.10) and runs on a Linux
server equipped with an Intel Xeon Gold 5218 CPU and NVIDIA Quadro RTX 8000 GPU. This
component is used to obtain the pre-trained model weights, i.e. pre-training and meta-training. Then,
the online component of our system is implemented and evaluated on Raspberry Pi Zero 2 and
NVIDIA Jetson Nano, which constitute widely used and representative embedded platforms. Pi Zero
2 is equipped with a quad-core 64-bit ARM Cortex-A53 and limited 512 MB RAM. Jetson Nano
has a quad-core ARM Cortex-A57 processor with 4 GB of RAM. Also, we do not use sophisticated
memory optimisation methods or compiler directives between the inference layer and the hardware to
decrease the peak memory footprint; such mechanisms are orthogonal to our algorithmic innovation
and may provide further memory reduction on top of our task-adaptive sparse update.

18

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
Layer Index

5

0

5

10

15

20

Ac
cu

ra
cy

 G
ai

n
(%

)

Update All Channels
Update 50% Channels

Update 25% Channels
Update 12.5% Channels

(a) Accuracy Gain

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
Layer Index

10

5

0

5

10

15

Ac
cu

ra
cy

 G
ai

n
(%

)/

Pa
ra

m
s

Update All Channels
Update 50% Channels

Update 25% Channels
Update 12.5% Channels

(b) Accuracy Gain / Params

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
Layer Index

0

100

200

300

400

Ac
cu

ra
cy

 G
ai

n
(%

)/

M
AC

s

Update All Channels
Update 50% Channels

Update 25% Channels
Update 12.5% Channels

(c) Accuracy Gain / MACs

Figure 7: Memory- and compute-aware analysis of MobileNetV2 by updating four different channel
ratios on each layer.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Layer Index

0

5

10

15

20

25

30

Ac
cu

ra
cy

 G
ai

n
(%

)

Update All Channels
Update 50% Channels

Update 25% Channels
Update 12.5% Channels

(a) Accuracy Gain

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Layer Index

0

10

20

30

40

50
Ac

cu
ra

cy
 G

ai
n

(%
)/

Pa

ra
m

s

Update All Channels
Update 50% Channels

Update 25% Channels
Update 12.5% Channels

(b) Accuracy Gain / Params

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Layer Index

0

25

50

75

100

125

150

175

Ac
cu

ra
cy

 G
ai

n
(%

)/

M
AC

s

Update All Channels
Update 50% Channels

Update 25% Channels
Update 12.5% Channels

(c) Accuracy Gain / MACs

Figure 8: Memory- and compute-aware analysis of ProxylessNASNet by updating four different
channel ratios on each layer.

E Additional Results

In this section, we present additional results that are not included in the main content of the paper due
to the page limit.

E.1 Memory- and Compute-aware Analysis

In §2.2, to investigate the trade-offs among accuracy gain, compute and memory cost, we analysed
each layer’s contribution (i.e. accuracy gain) on the target dataset by updating a single layer at a time,
together with cost-normalised metrics, including accuracy gain per parameter and per MAC operation
of each layer. MCUNet is used as a case study. Hence, here we provide the results of memory- and
compute-aware analysis on the remaining architectures (MobileNetV2 and ProxylessNASNet) based
on the Traffic Sign dataset as shown in Figure 7 and 8.

The observations on MobileNetV2 and ProxylessNASNet are similar to those of MCUNet. Specif-
ically: (a) accuracy gain per layer is generally highest on the first layer of each block for both
MobileNetV2 and ProxylessNASNet; (b) accuracy gain per parameter of each layer is higher on
the second layer of each block for both MobileNetV3 and ProxylessNASNet, but it is not a clear
pattern; and (c) accuracy gain per MACs of each layer has peaked on the second layer of each block
for MobileNetV2, whereas it does not have clear patterns for ProxylessNASNet. These observations
indicate a non-trivial trade-off between accuracy, memory, and computation for all the employed
architectures in our work.

E.2 Pairwise Comparison among Different Channel Selection Schemes

Here, we present additional results regarding the pairwise comparison between our dynamic channel
selection and static channel selections (i.e. Random and L2-Norm). Figure 9 and 10 show that the
results of MobileNetV2 and ProxylessNASNet on the Traffic Sign dataset, respectively.

Similar to the results of MCUNet, the dynamic channel selection on MobileNetV2 and Proxyless-
NASNet consistently outperforms static channel selections as the accuracy gain per layer differs by

19

27 29 31 33 35 37 39 41 43 45 47 49 51
Layer Index

5

0

5

10

15

20

Ac
cu

ra
cy

 G
ai

n
(%

)

Fisher L2 Norm Random

(a) 50% channels selected

27 29 31 33 35 37 39 41 43 45 47 49 51
Layer Index

5

0

5

10

15

Ac
cu

ra
cy

 G
ai

n
(%

)

Fisher L2 Norm Random

(b) 25% channels selected

27 29 31 33 35 37 39 41 43 45 47 49 51
Layer Index

5

0

5

10

15

Ac
cu

ra
cy

 G
ai

n
(%

)

Fisher L2 Norm Random

(c) 12.5% channels selected

Figure 9: The pairwise comparison between our dynamic channel selection and static channel
selections (i.e. Random and L2-Norm) on MobileNetV2.

36 38 40 42 44 46 48 50 52 54 56 58 60
Layer Index

0

5

10

15

20

25

Ac
cu

ra
cy

 G
ai

n
(%

)

Fisher L2 Norm Random

(a) 50% channels selected

36 38 40 42 44 46 48 50 52 54 56 58 60
Layer Index

0

5

10

15

20

25

Ac
cu

ra
cy

 G
ai

n
(%

)

Fisher L2 Norm Random

(b) 25% channels selected

36 38 40 42 44 46 48 50 52 54 56 58 60
Layer Index

0

5

10

15

20

Ac
cu

ra
cy

 G
ai

n
(%

)

Fisher L2 Norm Random

(c) 12.5% channels selected

Figure 10: The pairwise comparison between our dynamic channel selection and static channel
selections (i.e. Random and L2-Norm) on ProxylessNASNet.

up to 5.1%. Also, the gap between dynamic and static channel selection increases as fewer channels
are selected for updates.

E.3 End-to-End Latency Breakdown of TinyTrain and SparseUpdate

In this subsection, we present the end-to-end latency breakdown to highlight the efficiency of our
task-adaptive sparse update (i.e. the dynamic layer/channel selection process during deployment)
by comparing our work (TinyTrain) with previous SOTA (SparseUpdate). We present the time to
identify important layers/channels by calculating Fisher Potential (i.e. Fisher Calculation in Table 5
and 6) and the time to perform on-device training by loading a pre-trained model and performing
backpropagation (i.e. Run Time in Tables 5 and 6).

In addition to the main results of on-device measurement on Pi Zero 2 presented in §3.2, we selected
Jetson Nano as an additional device and performed experiments in order to ensure that our results
regarding system efficiency are robust and generalisable across diverse and realistic devices. We used
the same experimental setup (as detailed in §3.1 and §A.4) as the one used for Pi Zero 2.

As shown in Table 5 and 6, our experiments show that TinyTrain enables efficient on-device training,
outperforming SparseUpdate by 1.3-1.7× on Jetson Nano and by 1.08-1.12× on Pi Zero 2 with
respect to end-to-end latency. Moreover, Our dynamic layer/channel selection process takes around
18.7-35.0 seconds on our employed edge devices (i.e. Jetson Nano and Pi Zero 2), accounting for
only 3.4-3.8% of the total training time of TinyTrain.

E.4 Impact of Meta-Training

In this subsection, we present the complete results of the impact of meta-training. As discussed in §3.3,
Figure 6a shows the average Top-1 accuracy with and without meta-training using MCUNet over nine
cross-domain datasets. This analysis shows the impact of meta-training compared to conventional
transfer learning, demonstrating the effectiveness of our FSL-based pre-training. However, it does not
reveal the accuracy results of individual datasets and models. Hence, in this subsection, we present
figures that compare Top-1 accuracy with and without meta-training for each architecture and dataset
with all the on-device training methods to present the complete results of the impact of meta-training.
Figures 11, 12, and 13 demonstrate the effect of meta-training based on MCUNet, MobileNetV2,

20

Table 5: The end-to-end latency breakdown of TinyTrain and SOTA on Pi Zero 2. The end-to-end
latency includes time (1) to load a pre-trained model, (2) to perform training using given samples
(e.g. 25) over 40 iterations, and (3) to calculate fisher information on activation (For TinyTrain).

Model Method Fisher Calculation (s) Run Time (s) Total (s) Ratio

MCUNet SparseUpdate 0.0 607 607 1.12×
TinyTrain (Ours) 18.7 526 544 1×

MobileNetV2 SparseUpdate 0.0 611 611 1.10×
TinyTrain (Ours) 20.1 536 556 1×

ProxylessNASNet SparseUpdate 0.0 645 645 1.08×
TinyTrain (Ours) 22.6 575 598 1×

Table 6: The end-to-end latency breakdown of TinyTrain and SOTA on Jetson Nano. The end-to-end
latency includes time (1) to load a pre-trained model, (2) to perform training using given samples
(e.g., 25) over 40 iterations, and (3) to calculate fisher information on activation (For TinyTrain).

Model Method Fisher Calculation (s) Run Time (s) Total (s) Ratio

MCUNet SparseUpdate 0.0 1,189 1,189 1.3×
TinyTrain (Ours) 35.0 892 927 1×

MobileNetV2 SparseUpdate 0.0 1,282 1,282 1.5×
TinyTrain (Ours) 32.2 815 847 1×

ProxylessNASNet SparseUpdate 0.0 1,517 1,517 1.7×
TinyTrain (Ours) 26.8 869 896 1×

and ProxylessNASNet, respectively, across all the on-device training methods and nine cross-domain
datasets.

E.5 Robustness of Dynamic Channel Selection

As described in §3.3, to show how much improvement is derived from dynamically selecting important
channels based on our method at deployment time, Figure 6b compares the accuracy of TinyTrain with
and without dynamic channel selection, with the same set of layers to be updated within strict memory
constraints using MCUNet. In this subsection, we present the full results regarding the robustness
of our dynamic channel selection scheme using all the employed architectures and cross-domain
datasets. Figures 14, 15, and 16 demonstrate the robustness of dynamic channel selection using
MCUNet, MobileNetV2, and ProxylessNASNet, respectively, based on nine cross-domain datasets.
Note that the reported results are averaged over 200 trials, and 95% confidence intervals are depicted.

21

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

35.5

82.0

55.3

78.9
72.8 72.9

53.5

83.3

60.5

81.0 79.3 79.3

w/o meta-training w/ meta-training

(a) Traffic Sign

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

42.3

72.7

47.5

73.6
67.4

70.8

49.4

73.1

48.5

75.2
71.0 73.8

w/o meta-training w/ meta-training

(b) Omniglot

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

42.1

75.3

56.7

74.4
69.0

74.1

50.2

75.5

63.6

77.1
73.7

78.8

w/o meta-training w/ meta-training

(c) Aircraft

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

73.8

90.7
83.9

88.6 88.3 90.090.1 92.3 91.0 90.5 91.2 93.3

w/o meta-training w/ meta-training

(d) Flower

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

48.4

66.4

54.0
60.9

67.1 66.768.5 67.2 64.5 64.5

71.9 69.9

w/o meta-training w/ meta-training

(e) CUB

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

60.1

74.6 72.0 73.3 73.2 73.2
69.4

73.9 76.0 75.7 76.8 76.0

w/o meta-training w/ meta-training

(f) DTD

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

40.9

64.0

50.3

67.2
61.9 64.5

57.0

64.8

53.2

68.8 66.7 67.3

w/o meta-training w/ meta-training

(g) QDraw

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

30.9

40.4
36.4

41.0 41.5 41.9
46.8

41.0
46.6 44.5 46.3 45.5

w/o meta-training w/ meta-training

(h) Fungi

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

26.8

36.0 35.2 36.9 37.5 36.2

43.5

34.5

42.9
39.8

42.8
39.4

w/o meta-training w/ meta-training

(i) COCO

Figure 11: The effect of meta-training on MCUNet across all the on-device training methods and
nine cross-domain datasets.

22

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

39.9

75.5

58.2

71.3
77.3 76.0

47.1

75.7

61.3

70.4
77.2 77.4

w/o meta-training w/ meta-training

(a) Traffic Sign

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

44.4

69.1

55.1

69.0 69.1 67.3

48.0

69.3

59.6

69.8 69.0 68.1

w/o meta-training w/ meta-training

(b) Omniglot

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

48.4

68.9

59.6

68.1
72.4 73.4

47.1

69.4

61.9
68.8

73.5 74.1

w/o meta-training w/ meta-training

(c) Aircraft

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y 81.5

84.4 86.3 85.9 87.3
90.2

85.2 84.3
88.7 86.4 88.2

91.6

w/o meta-training w/ meta-training

(d) Flower

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

61.1 61.8 61.8
57.2

62.5 61.3
65.6

61.0
67.2

57.9
64.9 64.3

w/o meta-training w/ meta-training

(e) CUB

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

70.3 71.3 72.2 70.9 71.1 72.071.7 71.2
75.3 72.9 73.3 74.9

w/o meta-training w/ meta-training

(f) DTD

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

45.5

60.5

53.3

62.5 61.8 59.0

51.6

59.6 58.4
62.9 62.1 60.6

w/o meta-training w/ meta-training

(g) QDraw

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

38.6 37.7 39.8 38.2 38.8 38.8
42.5

36.9
43.5

39.0 41.4 40.8

w/o meta-training w/ meta-training

(h) Fungi

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

35.8 35.0 36.7 36.3 35.8 36.9
41.7

35.4
40.1 37.8 37.5 39.1

w/o meta-training w/ meta-training

(i) COCO

Figure 12: The effect of meta-training on MobileNetV2 across all the on-device training methods
and nine cross-domain datasets.

23

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

42.6

78.4

57.1

72.5
76.0 76.3

48.0

78.0

60.6

74.1
77.9 79.0

w/o meta-training w/ meta-training

(a) Traffic Sign

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

50.5

73.3

58.8

73.6 72.4 73.2

44.4

71.7

57.4

72.1 70.8 71.9

w/o meta-training w/ meta-training

(b) Omniglot

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

41.4

71.4

52.7

70.3 71.2 73.9

46.3

71.3

59.5

72.3 74.7 76.7

w/o meta-training w/ meta-training

(c) Aircraft

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y 80.5

86.3 85.5 86.2 87.8
91.4

83.9 86.3 88.7 87.4 89.5
92.7

w/o meta-training w/ meta-training

(d) Flower

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

53.2

64.5

56.1 57.4
62.1 63.664.5 63.4

68.1

59.0
65.5 67.4

w/o meta-training w/ meta-training

(e) CUB

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

69.0 71.7 72.9 71.0 71.7 73.1
66.1

71.7
75.0 73.4 74.5 76.0

w/o meta-training w/ meta-training

(f) DTD

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

47.3

63.8

53.0

65.8 64.1 65.1

48.5

62.5
57.2

65.8 64.6 65.9

w/o meta-training w/ meta-training

(g) QDraw

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

36.4 38.9 38.6 38.6 39.6 40.641.5 38.9
43.5

40.0 42.6 43.4

w/o meta-training w/ meta-training

(h) Fungi

Non
e

Full

Trai
n Last

Lay
er

Tiny
TL

Spa
rse

Upd
ate Tiny

Trai
n

20

40

60

80

100

To
p-

1
A

cc
ur

ac
y

38.6 37.2 38.7 37.6 37.1 39.0
44.0

36.5
42.0 39.2 39.3 41.6

w/o meta-training w/ meta-training

(i) COCO

Figure 13: The effect of meta-training on ProxylessNASNet across all the on-device training methods
and nine cross-domain datasets.

24

310 320 330 340 350
Backward Pass Memory (KB)

68

70

72

74

76

78

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(a) Traffic Sign

310 320 330 340 350
Backward Pass Memory (KB)

66

68

70

72

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(b) Omniglot

310 320 330 340 350
Backward Pass Memory (KB)

68

70

72

74

76

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(c) Aircraft

310 320 330 340 350
Backward Pass Memory (KB)

90

92

94

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(d) Flower

310 320 330 340 350
Backward Pass Memory (KB)

72

74

76

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(e) CUB

310 320 330 340 350
Backward Pass Memory (KB)

76

78

80

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(f) DTD

310 320 330 340 350
Backward Pass Memory (KB)

62

64

66

68

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(g) QDraw

310 320 330 340 350
Backward Pass Memory (KB)

46

47

48

49

50

51

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(h) Fungi

310 320 330 340 350
Backward Pass Memory (KB)

43

44

45

46

47

48

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(i) COCO

Figure 14: The effect of dynamic channel selection using MCUNet on nine cross-domain datasets.

25

340 345 350 355 360 365 370
Backward Pass Memory (KB)

66

68

70

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(a) Traffic Sign

340 345 350 355 360 365 370
Backward Pass Memory (KB)

58

60

62

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(b) Omniglot

340 345 350 355 360 365 370
Backward Pass Memory (KB)

58

60

62

64

66

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(c) Aircraft

340 345 350 355 360 365 370
Backward Pass Memory (KB)

86

88

90

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(d) Flower

340 345 350 355 360 365 370
Backward Pass Memory (KB)

62

64

66

68

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(e) CUB

340 345 350 355 360 365 370
Backward Pass Memory (KB)

72

74

76

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(f) DTD

340 345 350 355 360 365 370
Backward Pass Memory (KB)

52

54

56

58

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(g) QDraw

340 345 350 355 360 365 370
Backward Pass Memory (KB)

38

40

42

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(h) Fungi

340 345 350 355 360 365 370
Backward Pass Memory (KB)

40

41

42

43

44

45

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(i) COCO

Figure 15: The effect of dynamic channel selection with MobileNetV2 on nine cross-domain datasets.

26

255 260 265 270 275 280
Backward Pass Memory (KB)

68

70

72

74

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(a) Traffic Sign

255 260 265 270 275 280
Backward Pass Memory (KB)

60

62

64

66

68

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(b) Omniglot

255 260 265 270 275 280
Backward Pass Memory (KB)

60

62

64

66

68

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(c) Aircraft

255 260 265 270 275 280
Backward Pass Memory (KB)

88

90

92

94

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(d) Flower

255 260 265 270 275 280
Backward Pass Memory (KB)

64

66

68

70

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(e) CUB

255 260 265 270 275 280
Backward Pass Memory (KB)

74

76

78

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(f) DTD

255 260 265 270 275 280
Backward Pass Memory (KB)

58

60

62

64

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(g) QDraw

255 260 265 270 275 280
Backward Pass Memory (KB)

40

42

44

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(h) Fungi

255 260 265 270 275 280
Backward Pass Memory (KB)

43

44

45

46

47

To
p-

1
A

cc
ur

ac
y

Fisher L2 Norm Random

(i) COCO

Figure 16: The effect of dynamic channel selection with ProxylessNASNet on all the datasets.

27

F Further Analysis and Discussion

F.1 Cost of Meta-Training

In this subsection, we analyse the cost of meta-training, one of the major components of our FSL-
based pre-training, in terms of the overall latency to perform meta-training. In our experiments, the
offline meta-training on the source dataset, MiniImageNet, takes 5-6 hours across three architectures.
However, note that the cost is small as meta-training needs to be performed only once per architecture.
Furthermore, this cost is amortised by being able to reuse the same resulting meta-trained model
across multiple downstream tasks (different target datasets) and devices, e.g. Raspberry Pi Zero 2 and
Jetson Nano.

G Extended Related Work

G.1 On-Device Training

Scarce memory and compute resources are major bottlenecks in deploying DNNs on tiny edge devices.
In this context, researchers have largely focused on optimising the inference stage (i.e. forward
pass) by proposing lightweight DNN architectures [11, 46, 35], pruning [14, 33], and quantisation
methods [20, 25, 44], leveraging the inherent redundancy in weights and activations of DNNs.
Driven by the increasing privacy concerns and the need for post-deployment adaptability to new
tasks or users, the research community has recently turned its attention to enabling DNN training
(i.e., backpropagation having both forward and backward passes, and weights update) at the edge.

Researchers proposed memory-saving techniques to resolve the memory constraints of training [51,
5, 39, 9, 34]. For example, gradient checkpointing [6, 21, 24] discards activations of some layers in
the forward pass and recomputes those activations in the backward pass. Microbatching [19] splits
a minibatch into smaller subsets that are processed iteratively, to reduce the peak memory needs.
Swapping [18, 57, 60] offloads activations or weights to an external memory/storage (e.g. from GPU
to CPU or from an MCU to an SD card). Some works [41, 58, 12] proposed a hybrid approach by
combining two or three memory-saving techniques. Although these methods reduce the memory
footprint, they incur additional computation overhead on top of the already prohibitively expensive
on-device training time at the edge. Instead, TinyTrain drastically minimises not only memory but
also the amount of computation through its dynamic sparse update that identifies and trains only the
most important layers/channels on-the-fly.

A few existing works [31, 4, 43] have also attempted to optimise both memory and computations,
with prominent examples being TinyTL [4] and SparseUpdate [31]. By selectively updating only a
subset of layers and channels during on-device training, these methods effectively reduce both the
memory and computation load. Nonetheless, as shown in §3.2, the performance of this approach
drops dramatically (up to 7.7% for SparseUpdate) when applied at the extreme edge where data
availability is low. This occurs because the approach requires access to the entire target dataset
(e.g. SparseUpdate [31] uses the entire CIFAR-100 dataset [26]), which is unrealistic for such devices
in the wild. More importantly, it requires a large number of epochs (e.g. SparseUpdate requires 50
epochs) to reach high accuracy, which results in an excessive training time of up to 10 days when
deployed on extreme edge devices, such as STM32F746 MCUs. Also, these methods require running
a few thousands of computationally heavy search [31] or pruning [43] processes on powerful GPUs
to identify important layers/channels for each target dataset; as such, the current static layer/channel
selection scheme cannot be adapted on-device to match the properties of the user data and hence
remains fixed after deployment, leading to an accuracy drop. In addition, TinyTL still demands
excessive memory and computation (see §3.2). In contrast, TinyTrain enables data-, compute-,
and memory-efficient training on tiny edge devices by adopting few-shot learning pre-training and
dynamic layer/channel selection.

G.2 Few-Shot Learning

Due to the scarcity of labelled user data on the device, developing Few-Shot Learning (FSL) tech-
niques is a natural fit for on-device training [15]. FSL methods aim to learn a target task given a
few examples (e.g. 5-30 samples per class) by transferring the knowledge from large source data
(i.e. meta-training) to scarcely annotated target data (i.e. meta-testing). Until now, several FSL

28

schemes have been proposed, ranging from gradient-based [10, 2, 29], and metric-based [50, 52, 47]
to Bayesian-based [62]. Recently, a growing body of work has been focusing on cross-domain
(out-of-domain) FSL (CDFSL) [13]. The CDFSL setting dictates that the source (meta-train) dataset
drastically differs from the target (meta-test) dataset. As such, although CDFSL is more challenging
than the standard in-domain (i.e. within-domain) FSL [17], it tackles more realistic scenarios, which
are similar to the real-world deployment scenarios targeted by our work. In our work, we focus on
realistic use-cases where the available source data (e.g. MiniImageNet [56]) are significantly different
from target data (e.g. meta-dataset [54]) with a few samples (5-30 samples per class), and hence
incorporate CDFSL techniques into TinyTrain.

FSL-based methods only consider data efficiency and neglect the memory and computation bot-
tlenecks of on-device training. Therefore, we explore joint optimisation of three major pillars of
on-device training such as data, memory, and computation.

29

	Introduction
	Methodology
	Few-Shot Learning-Based Pre-training
	Task-Adaptive Sparse Update

	Evaluation
	Experimental Setup
	Main Results
	Ablation Study and Analysis

	Related Work
	Conclusion
	Appendix
	
	Detailed Experimental Setup
	Datasets
	Model Architectures
	Training Details
	Details for Evaluation Setup
	Baselines

	Details of Sampling Algorithm during Meta-Testing
	Sampling Algorithm during Meta-Testing
	Sample Statistics during Meta-Testing

	Fine-tuning Procedure during Meta-Testing
	System Implementation
	Additional Results
	Memory- and Compute-aware Analysis
	Pairwise Comparison among Different Channel Selection Schemes
	End-to-End Latency Breakdown of TinyTrain and SparseUpdate
	Impact of Meta-Training
	Robustness of Dynamic Channel Selection

	Further Analysis and Discussion
	Cost of Meta-Training

	Extended Related Work
	On-Device Training
	Few-Shot Learning

