Second Year Report

Young D. Kwon
Churchill College

H UNIVERSITY OF
P CAMBRIDGE

Efficient Continual and On-device Learning in Mobile Computing

University of Cambridge
Department of Computer Science and Technology
William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
UNITED KINGDOM

Email: ydk21@cam.ac.uk
June 28, 2022

Contents

1 Progress Updates 1
2 Thesis Outline 5
3 Timeline 7
4 Contributions 10

A Exploring System Performance of Continual Learning for Mobile

and Embedded Sensing Applications 12
A1 Introduction 14
A2 Related Work 16
A.2.1 Continual Learning 16
A.2.2 Deep Learning for Mobile Sensing Systems 17
A.3 Continual Learning for Mobile and Embedded Sensing Framework . 18
A.3.1 Continual Learning Setup and Three Scenarios 18
A.3.2 Incremental Learning Methods 19
A.3.3 Characterization of Hyper-parameters 21
A.3.4 Model Training Process 23
A.3.5 Implementation 23
A4 Experimental Setupo 24
A4.1 Datasets 24
A.4.2 Evaluation Metrics L 26
A5 Findings 27
A.5.1 Performance on Simple and Mildly Difficult Tasks 29
A.5.2 Performance on Many Sequential Tasks 31
A.5.3 Generalization 31
A.5.4 Storage, Latency, and Memory Footprint 33
A.5.5 Performance with IL parameters 39

A6 Discussion 39

A.7 Conclusions and Future Work 40

B FastICARL: Fast Incremental Classifier and Representation Learn-
ing with Efficient Budget Allocation in Audio Sensing Applications 42

B.1 Introduction 43
B.2 Methodology 44
B.2.1 Problem Formulation 44
B22 ICARL. 45
B.2.3 FastICARL 45
B.3 Evaluation 47
B.3.1 Datasets 47
B.3.2 Experimental Setup 47
B.3.3 Implementation 49
B34 Results. 49
B.4 Conclusions 50
C YONO: Modeling Multiple Heterogeneous Neural Networks on
Microcontrollers 52
C.1 Introduction 54
C.2 YONO . . . e 56
C.2.1 Overview e 56
C.2.2 Product Quantization and Compressing Single Neural Network 57
C.2.3 Compressing Multiple Heterogeneous Networks 58
C.2.4 Network Optimization 59
C.2.5 Optimization Heuristics 59
C.2.6 In-memory Execution and Model Swap Framework on MCUs 61
C.3 System Implementation. 64
C4 Evaluation 64
C.4.1 Experimental Setup 65
C.4.2 Performance 66
C.4.3 Scalability o 69
C.4.4 Generalizability oL 71
C.4.5 Evaluation on In-Memory Execution and Model Swapping
Framework on MCUs 73
C.5 Discussion 75
C.6 Related Work 76
C.7 Conclusions e 78
D MetaCLNet: Rehearsal-based Meta Continual Learning with Com-
pressed Latent Replay and Neural Weights 79
D.1 Introduction 81

i

D.2

D.3
D4

D.5
D.6
D.7

Designo 84
D.2.1 Problem Formulation & System Overview 84
D.2.2 Meta Continual Learning 85
D.2.3 MetaCLNet 87
D.2.4 Rehearsal Techniques 89
D.2.5 Sparse Bitmap Compression for Latent Replays 90
D.2.6 Product Quantization for Compressing Latent Replays . . . 92
D.2.7 Quantizing Neural Weights 92
Implementation o 93
Evaluation 94
D.4.1 Experimental Setup L. 94
D.4.2 Accuracy 97
D.4.3 Memory Footprint L. 98
D.4.4 End-to-end Latency & Energy Consumption 98
D.4.5 Ablation Studyo 100
D.4.6 Parameter Analysis 103
Related Work 104
Discussion 105
Conclusions 106

1l

List of Figures

Al
A2

A3
A4

A5

B.1

C.1

C.2

C.3

C4

Overview of our continual learning system.
The performance comparison of the five IL methods including two
baselines in Scenario 1 on each dataset.
Performance comparison in Scenario 2.
The performance comparison in Scenario 3. All reported results are
averaged over 10 trials, and standard-error intervals are depicted.
The parameter analysis of the best performing model, iCaRL, in all
tasks (HAR, GR, and ER) for all scenarios according to its storage
budgets. Reported results are averaged over 10 trials. Standard-error
intervals are depicted.

Comparison of the storage requirement (M + B) for ICARL and
FastICARL (32, 16, and 8 bits) based on 20% budget size in each

dataset. . . . oL

Overview of the offline component of YONO. The offline module
employs PQ to learn a pair of codebooks and identify indices to
represent multiple heterogeneous neural networks. This module in-
corporates our novel optimization process and heuristics to minimize
the accuracy loss compared to the original models.
Overview of the online component of YONO. The online module en-
ables fast and efficient model loading/swap and in-memory execution.
The inference accuracy of the heterogeneous MTL systems trained
with five datasets of two modalities. Reported results are averaged
over five trials, and standard-deviation intervals are depicted.

The inference accuracy of the heterogeneous MTL systems trained
with seven datasets of four modalities. Reported results are averaged
over five trials, and standard-deviation intervals are depicted.

v

68

70

C.5

C.6

C.7

D.1
D.2
D.3

D4

D.5

D.6

The inference accuracy of the heterogeneous MTL systems applied
to unseen datasets of four modalities. Reported results are averaged
over five trials, and standard-deviation intervals are depicted.

The model execution and loading/switching time of YONO and the
baseline. L

The energy consumption of model execution and loading/switching
of YONO and the baseline.

Preliminary analysis of the Meta CL methods.
The overview of the proposed CL system, MetaCLNet.
The histogram of activation values (latent representations) for the
latent layer of the model trained on the GSCv2 dataset (The same
observation holds for the other employed datasets). More than 90%
of the activation values are zero, and thus the proportion of non-zero
values is very small due to the ReLU non-linearity.
The meta-test testing accuracy of the CL systems on the three
datasets of two different modalities. Reported results are averaged
over three trials, and standard-deviation intervals are depicted.

The end-to-end latency and energy consumption of the baselines
and MetaCLNet to perform CL over all the given classes during
the meta-test phase on three datasets. All results are averaged over
three runs with standard deviations.
The parameter analysis of MetaCLNet for all the datasets according
to the three parameters.

96

List of Tables

Al
A2

A3

A4

A5

A6

B.1

B.2

C.1

C.2

C.3

C4

C.5

Overview of the employed datasets.
Average performance of different methods in all scenarios on HAR,
GR,and ER.
Storage requirements of IL methods. M refers to the number of
model parameters, 7 represents number of tasks and B is the storage
budget.
Storage requirements of IL methods for all datasets - Scenario 3.
Units are measured in MB.
Average Latency (Training Time/IL Time) in seconds for IL methods
on different datasets - Scenario 3 on Jetson Nano.
Average Latency (Training Time/IL Time) in seconds for iCaRL on
three datasets - Scenario 3 on Smartphone.

Average weighted F1-score of baselines and FastICARL according
to the budget size (B = 5%, 10%, 20%) in EmotionSense and Urban-
Sound8K datasets.
Average Latency (IL Time) in seconds for ICARL and FastICARL
on Jetson Nano and a smartphone (Google Pixel 4) for both datasets
according to the budget size (B = 5%, 10%,20%).

Summary of datasets, model architectures, mobile applications used
in §C4.2and §C.4.3.
The compression efficiency of the heterogeneous MTL systems trained
with five datasets of two modalities.
The compression efficiency of the heterogeneous MTL systems trained
with seven datasets of four modalities.
Summary of datasets, model architectures, mobile applications used
in §C.4.4.
The compression efficiency of the heterogeneous MTL systems ap-
plied to unseen datasets of four modalities.

vi

24

D.1
D.2

D.3

Frequently-used symbols and definitions.
The comparison of the required memory footprint and the compres-
sion ratio for the baselines and our system to perform CL during
the meta-test phase on three datasets.
The comparison of the MetaCLNet and other variants of rehearsal-
based Meta CL methods during the meta-test phase for the ablation
study. . ..

Vil

Chapter 1

Progress Updates

Research Statement. With the rise of mobile devices, and the Internet of Things
(IoT), the proliferation of sensory-type data has fostered the adoption of deep neural
networks (DNN) in the modeling of a variety of mobile sensing applications [1]. A crucial
characteristic common to these applications, often sitting on edge devices, is the need
for a trained model to accommodate new classes and adapt to a dynamically changing
environment. In such settings, the ability to perform continual and on-device Learning [2, 3|
(to learn new knowledge, i.e., new classes in this thesis) without forgetting how to perform
previously learned knowledge, becomes essential yet challenging in scenarios where a
learned model is deployed on a resource-constrained device in the real world. Motivated by
this, the main objective and scope of my research are to develop an efficient continual and
on-device learning system in mobile computing. During the first two years of my Ph.D.,
I conducted a comprehensive literature search for CL and on-device learning, analyzed
various system bottleneck that causes inefficiency in applying CL to resource-constrained
systems, and developed new algorithms and systems that drastically improve the system
efficiency without losing any accuracy.

First-year Contributions. During my first year, I first investigated the advantages and
disadvantages of current CL methods in mobile sensing tasks. I then overcame the strict
resource constraints of mobile and embedded systems by developing a new CL method
optimizing the computational and storage requirements of one of the representative CL
methods.

I began by analyzing the feasibility and applicability of CL methods in various mobile
sensing applications while considering the limits poised by mobile and edge platforms,
namely, low computational power, smaller memory and storage. Specifically, I adopted six
CL methods from three different CL categories to evaluate their effectiveness and efficiency.
Also, T employed six datasets from three modalities of mobile sensing tasks such as (1)

Human Activity Recognition (HAR) [4] based on accelerometer, gyroscope, and magne-
tometer, (2) Gesture Recognition (GR) [5] based on surface electromyography (sEMG),
and (3) Emotion Recognition (ER) [6] based on speech. Furthermore, I implemented an
end-to-end CL framework on two devices with different specifications: Jetson Nano and
an off-the-shelf smartphone. Through the extensive evaluation, I found that the rehearsal-
based CL approach (saving a small set of samples for rehearsal not to forget existing
knowledge while learning new classes) often outperforms other CL approaches. This work
became a good starting point helping me understand the challenges and limitations of
current CL. methods when applied to mobile sensing applications on resource-constrained
devices. The result of the first work is presented in Appendix A. Currently, this work [7]
has been published at SEC "21 (The Sixth ACM/IEEE Symposium on Edge Computing)
and wins the best paper award.

Based on the findings of the first work, I realized that one of the major bottlenecks of
enabling end-to-end CL on-device is an expensive computational requirement to learn
new user inputs/classes (e.g., activities in HAR, gestures in GR). Furthermore, iCaRL
(rehearsal-based CL method that I found outperforms other methods in [7]) requires
a large storage budget to store representative samples of learned classes. Motivated
by these limitations of prior works, I proposed a novel CL method, FastlICARL, that
improves upon iCaRL by reducing the CL time and alleviating the storage requirements
to store rehearsal samples. To develop FastICARL, I first optimized the construction
process of an exemplar set (which takes most of the CL time) to shorten the CL time
to tackle the limitation of computational overhead. Specifically, to find the informative
exemplars that can best approximate feature vectors over all training examples, iCaRL
relies on herding which contains inefficient double for loops. Instead, FastICARL utilizes
a k-nearest-neighbor and a max heap data structure to search exemplars more efficiently.
In addition, to address the limitation on storage burden in resource-constrained devices, I
further optimized FastICARL by applying quantization on rehearsal samples to reduce
the storage requirement. Furthermore, I converted the 32-bit float data type into 16-
bit float and 8-bit integer data types. Furthermore, I implemented the end-to-end CL
framework on mobile and embedded devices of two different specifications: Jetson Nano
and a smartphone (Google Pixel 4). To demonstrate its effectiveness and efficiency, I
experimented with it in two audio sensing applications: an Emotion Recognition (ER)
task and an Environmental Sound Classification (ESC) as a case study. The result of this
work is presented in Appendix B. Also, this work [8] is published at INTERSPEECH 21
(Conference of the International Speech Communication Association).

Second-year Contributions. In my second year, in addition to enabling efficient
CL, I started to expand the scope of my research to further optimize the on-device
learning as mobile and embedded systems deployed in the real world often need to operate
multiple applications. Also, since such systems’ memory is limited (even more so on

extremely resource-constrained platforms like microcontrollers (MCUs) with 100 KB
of SRAM), maintaining a pre-trained model for each application is not scalable nor
practical (applying scalar quantization [9] on each model can mitigate memory /storage
issues, however, the compression rate is low). Then, sharing network structure [10] can
be a solution for correlated and similarly structured models, however, it is not practical
when systems want to operate multiple heterogeneous models. Therefore, I have asked the
following research question: s it feasible to compress multiple heterogeneous models without
sacrificing accuracy on severely resource-constrained devices like MCUs? To answer this
research question, I propose YONO, a product quantization (PQ) [11] based approach
that compresses multiple heterogeneous models and enables in-memory model execution
and model switching for dissimilar multi-task learning on MCUs. I first adopt PQ to
learn codebooks that store weights of different models. Also, I propose a novel network
optimization and heuristics to maximize the compression rate and minimize the accuracy
loss. Then, I develop an online component of YONO for efficient model execution and
switching between multiple tasks on an MCU at run time without relying on an external
storage device. Through extensive experiments, YONO shows remarkable performance
as it can compress multiple heterogeneous models with negligible or no loss of accuracy
up to 12.37x. Furthermore, YONQO’s online component enables an efficient execution
(latency of 16-159 ms and energy consumption of 3.8-37.9 mJ per operation) and reduces
model loading/switching latency and energy consumption by 93.3-94.5% and 93.9-95.0%,
respectively, compared to external storage access. Interestingly, YONO can compress
various architectures trained with datasets that were not shown during YONO'’s offline
codebook learning phase showing the generalizability of my method. To summarize, YONO
shows great potential and opens further doors to enable multi-task learning systems on
extremely resource-constrained devices. The result of this work is presented in Appendix C.
Also, this work [12] is published at IPSN ’22 (The 21st International Conference on
Information Processing in Sensor Networks).

In addition, enabling efficient CL is also limited due to the difficulty of collecting labeled
data since many prior works in CL require a relatively large amount of labeled data to learn
new classes [13, 14, 3]. For mobile sensing tasks, it is more complicated to collect labeled
data different from image data. This point leads me to ask the following questions: how can
I reduce the amount of labeled data for learning new incoming classes to enable CL while
ensuring high performance? To what extent can I decrease the labeled data size, and what
are the trade-offs between the amount of labeled data and the CL model’s performance? To
answer these questions, I propose MetaCLNet, a novel rehearsal-based Meta CL method,
that achieves the best of both worlds: enhanced CL performance and improved system
efficiency. MetaCLNet combines rehearsal techniques and meta-learning for the first time
to ensure high CL performance (less forgetting, fast learning, and high accuracy based on
only a few samples per class). Also, to minimize resource overheads, MetaCLNet employs
various optimization techniques such as compression of rehearsal samples and quantization

of neural weights and activations. Surprisingly, MetaCLNet achieves near optimal CL
performance, falling short by only 2.8% on accuracy compared to the oracle, outperforming
existing Meta CL methods with substantial accuracy gains of 4.1-16.1%. Furthermore,
compared to the state-of-the-art (SOTA) Meta CL method, MetaCLNet drastically reduces
the memory footprint by 178.7x, end-to-end training latency by 80.8-94.2%, and energy
consumption by 80.9-94.2%. T successfully deployed MetaCLNet on two edge devices,
thereby enabling efficient CL on resource-constrained platforms where it is impractical to
run SOTA methods. This work is described in Appendix D and is currently under review
at SenSys 22 (The 20th ACM Conference on Embedded Networked Sensor Systems).

Ongoing Research. In recent years, with the increasing need to make tiny MCUs
intelligent to facilitate various use cases such as smart homes, smart buildings and factories,
TinyML designed to enable machine learning or deep learning on MCUs has attracted
much attention from academia and industry. Likewise, performing CL on extremely
resource-constrained devices like MCUs could have a massive impact on many mobile
applications since many deployed MCUs can be updated continually with a new stream
of new user data. However, to deploy tiny CL systems on MCUs, numerous challenges
still need to be addressed. First of all, there is no deep learning framework that supports
training (backpropagation) on MCUs. Second, MCUs have minimal on-chip memory
resources. For example, a “high-end” MCU such as STM32F769 has only 512 KB of
SRAM and 2 MB of embedded Flash (eFlash). Third, MCUs have limited computational
power. For example, STM32F769’s Arm 32-bit Cortex-M7 CPU is 216 MHz, much slower
than Cortex-A cores (e.g., Cortex-A78 used in Exynos 2100 has 2.81 GHz). Last but not
least, MCUs are battery-powered, and thus the energy is very limited.

As the first step to developing tiny CL systems on MCUs, I have started a project to bring
the DNN training that is only available on a server or powerful edge devices with at least
a few hundred MB of RAM to a tiny MCUs with only a few hundred KB of RAM (e.g., at
least 1,000x smaller in terms of available system resources). To overcome the challenges
described above, I plan to propose an efficient DNN training methodology that aims to
minimize the scarce on-chip memory of MCUs and computational costs. Also, I will take
into account hardware characteristics of MCUs (e.g., embedded Flash is read-only during
run time) while developing DNN training.

After establishing DNN training on MCUs, I will incorporate the developed DNN training
framework to deploy tiny CL systems on MCUs. For this project, I want to build upon
my previous work, MetaCLNet. Further, I want to optimize it to be deployed on MCUs.
Some ideas for improvement are as follows: (1) the data augmentation to improve the CL
performance and (2) searching for efficient network architectures designed for MCUs.

Chapter 2

Thesis Outline

The following is the proposed thesis outline:

1.

Introduction. This chapter introduces the background and motivations to perform
continual and on-device learning with real-world application scenarios in mobile
computing.

. Related work. This chapter describes the relevant research in the areas of on-device

ML and CL to discuss the necessity, novelty, and contributions of this thesis.

. Exploring the performance and resource trade-offs of CL in mobile com-

puting. This chapter is based on the work published at SEC ’21 that investigated
the performance and resource trade-offs of various CL methods in many mobile
sensing datasets of different data modalities. In addition, this chapter discusses the
advantages and disadvantages of various CL approaches to provide insights for the
subsequent chapters in my thesis.

Efficient continual learning. Based on the challenges and limitations discussed
and identified in the previous chapter, this chapter explains two works that propose
efficient CL methods. One work is published at INTERSPEECH 21, and the other

work is under review at SenSys '22.

. Bringing on-device learning from edge devices to microcontrollers. This

chapter describes the frameworks that explore the interesting area of TinyML
designed for extremely resource-constrained platforms, i.e., microcontrollers (MCUs).
This chapter explains two works: the first work published at IPSN 22 introduces the
compression techniques that can support multiple heterogeneous DNNs on MCUs.
The second work (my current project) will describe how I develop and overcome the
various challenges to enable DNN training on MCUs.

6. Efficient continual learning on microcontrollers. This chapter explains the
final work that orchestrates all the small pieces developed during my Ph.D. to build
the tiny and efficient CL systems on MCUs.

7. Conclusion. This chapter will first summarize the overall findings, contributions,
and impacts of my research. On top of that, I will discuss the limitations and
corresponding future works of this thesis. After that, I will conclude the thesis.

Chapter 3

Timeline

My research focuses on building an efficient on-device system that is exceptionally
lightweight and capable of updating itself to changing environments and user inputs
continually with minimal human intervention. The following is a proposed timeline
outlining the targets and milestones for my research.

1. Literature review: Months 1-4 (Done)

e Review the literature regarding CL and improve my knowledge about deep
neural networks.

e Understand the knowledge about mobile sensing, embedded systems.
2. Initial exploration of CL in mobile sensing. Months 5-9 (Done)

e Conduct the foundational research to identify the feasibility and applicability
of applying various CL methods in mobile sensing applications. (published at
SEC '21)

e Learn practical guidelines for applying CL in mobile sensing tasks on resource-
constrained devices.

e Propose a novel exemplar-based CL method called FastICARL. FastICARL
reduces the latency for the CL time and requires less storage than the original
iCaRL (published at INTERSPEECH ’21).

3. Implementation of existing works and further literature review: Months 10-12 (Done)

e Extensively review model compression literature, e.g., NAS, pruning, quantiza-
tion, weight sharing.

Implement some of the prior works to fully understand them and later use them
as baselines of my future work.

Review meta-learning and meta CL literature.

Implement representative meta CL works to use them as baselines.

4. Exploration of better compression techniques for multiple heterogeneous networks
on MCUs: Months 13-16 (Done)

Start with applying the basic PQ to a single model to see if it retains the
accuracy and to what extent it can reduce a storage and memory footprint.

Extend PQ to be applied to multiple models and evaluate the performance of
the PQ with respect to the accuracy, memory, storage footprint, and energy
consumption.

Come up with optimization techniques based on PQ or on other compres-
sion techniques to further shrink the memory /storage footprint of multiple
heterogeneous models.

Evaluate the optimized compression technique to what extent it can improve
upon the baseline methods in terms of performance and system aspects.

Evaluate my method in various application scenarios. For example, when a user
wants to include new models in my weight sharing method, it can represent the
unseen models without learning from scratch.

This work is published at IPSN ’22.

5. Adaptive CL systems with minimal human intervention: Months 17-21 (Done)

Analyze the advantages and disadvantages of the current state-of-the-art meta

CL method (ANML).

Extend the regularization-based meta CL framework to rehearsal-based meta
CL to maximize the performance with some additional overheads on memory.

Incorporate the possible optimizations based on quantization and latent replay
to reduce resource usage of the rehearsal-based meta CL.

This work is submitted to SenSys ’22.

6. Bringing DNN training from the server/edge to MCUs: Months 22-27 (In progress)

Propose an efficient and effective DNN training technique that can be done
on extremely resource-constrained devices. Some possible directions are incor-
porating the few-shot learning for rapid adaptation with fewer samples and

transfer learning with additional residual modules to recover the full accuracy.
e Develop the proposed DNN training technique on MCUs.
7. Enabling adaptive and efficient CL systems on MCUs: Months 28-33

e Combine all the building blocks developed during my Ph.D. to build the final
CL systems that are adaptive to changing user inputs and environments and
deployable on any device ranging from tiny devices like MCUs to edge devices
like Jetson Nano or Raspberry Pi 3B+.

8. Thesis writing: Months 34-36

Chapter 4

Contributions

Papers Published

(7] Exploring System Performance of Continual Learning for Mobile and Embedded Sensing
Applications

Young D. Kwon, Jagmohan Chauhan, Abhishek Kumar, Pan Hui, and Cecilia Mascolo.
The Sixth ACM/IEEE Symposium on Edge Computing, 2021. (SEC ’21). Best Paper
Award

[8] FastICARL: Fast Incremental Classifier and Representation Learning with Efficient
Budget Allocation in Audio Sensing Applications

Young D. Kwon, Jagmohan Chauhan, Cecilia Mascolo.

Conference of the International Speech Communication Association, 2021. (INTER-
SPEECH 21)

[12] YONO: Modeling Multiple Heterogeneous Neural Networks on Microcontrollers
Young D. Kwon, Jagmohan Chauhan, Cecilia Mascolo.

The 21th International Conference on Information Processing in Sensor Networks, 2022.
(IPSN ’22)

[15] Enabling On-Device Smartphone GPU based Training: Lessons Learned

Anish Das, Young D. Kwon, Jagmohan Chauhan, and Cecilia Mascolo.

The 2022 IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom 22 Workshops)

[16] Exploring On-Device Learning Using Few Shots for Audio Classification
Jagmohan Chauhan, Young D. Kwon, and Cecilia Mascolo.
The 30th European Signal Processing Conference, 2022. (EUSIPCO ’22)

10

Papers Under Shepherding

[17] PROS: an Efficient Pattern-Driven Operating System for Low-Power Healthcare
Wearables
Nhat Pham, Hong Jia, Minh Tran, Tuan Dinh, Nam Bui, Young D. Kwon, Dong Ma,
VP Nguyen, Cecilia Mascolo, and Tam Vu.
The 28th Annual International Conference on Mobile Computing and Networking, 2022.
(MobiCom ’22)

Papers Submitted

MetaCLNet: Rehearsal-based Meta Continual Learning with Compressed Latent Relays
and Neural Weights

Young D. Kwon, Hong Jia, Jagmohan Chauhan, and Cecilia Mascolo.

Submitted to the 20th ACM Conference on Embedded Networked Sensor Systems, 2022.
(SenSys '22)

Note: This work builds upon [18] and was later published as [19] at SenSys’23.

Work In Progress

UR2M: Uncertainty and Resource-aware Wearable Event Detection on Microcontrollers
Hong Jia, Young D. Kwon, Dong Ma, Nhat Pham, Lorena Qendro, Tam Vu, and Cecilia
Mascolo.

Note: This work was initially targeted for either MobiCom’23 or UbiComp’23 and was
ultimately published at PerCom’24 [20)].

Building an on-device fully decentralized learning framework
Issam Nedjai, Abhirup Ghosh, Young D. Kwon, and Cecilia Mascolo.
Note: Potential target workshop is ISWC at UbiComp ’22.

MCUTrain: Deep Neural Network Training on Microcontrollers

Young D. Kwon, in collaboration with Samsung Al researchers and Prof. Cecilia
Mascolo.

Note: Preliminary results presented at SenSys’23 PhD forum [21], with full paper published
at ICML’24 [22].

11

Appendix A
Exploring System Performance of

Continual Learning for Mobile and
Embedded Sensing Applications

12

Abstract

Continual learning approaches help deep neural network models adapt and learn incre-
mentally by trying to solve catastrophic forgetting. However, whether these existing
approaches, applied traditionally to image-based tasks, work with the same efficacy to the
sequential time series data generated by mobile or embedded sensing systems remains an
unanswered question.

To address this void, we conduct the first comprehensive empirical study that quantifies
the performance of three predominant continual learning schemes (i.e., regularization,
replay, and replay with examples) on six datasets from three mobile and embedded sensing
applications in a range of scenarios having different learning complexities. More specifically,
we implement an end-to-end continual learning framework on edge devices. Then we
investigate the generalizability, trade-offs between performance, storage, computational
costs, and memory footprint of different continual learning methods.

Our findings suggest that replay with exemplars-based schemes such as iCaRL has the
best performance trade-offs, even in complex scenarios, at the expense of some storage
space (few MBs) for training examples (1% to 5%). We also demonstrate for the first time
that it is feasible and practical to run continual learning on-device with a limited memory
budget. In particular, the latency on two types of mobile and embedded devices suggests
that both incremental learning time (few seconds - 4 minutes) and training time (1 - 75
minutes) across datasets are acceptable, as training could happen on the device when the
embedded device is charging thereby ensuring complete data privacy. Finally, we present
some guidelines for practitioners who want to apply a continual learning paradigm for
mobile sensing tasks.

A.1 Introduction

Deep learning has revolutionized the performance of various disciplines, including mobile
and embedded systems applications. This is particularly true for applications relying
on continuous streams of sensor data such as activity recognition [23], mental health,
and wellbeing [24], gesture recognition [25], tracking and localization [26]. However, a
crucial characteristic common to the above applications is the need for a trained model to
adapt to accommodate new classes and to a dynamically changing environment. In these
settings, the ability to continually learn [2, 3], that is, to learn consecutive tasks without
forgetting how to perform previously learned tasks, becomes essential. Let us consider
an example. Alice has a deep learning model deployed on her smartphone for human
activity recognition (HAR) to recognize simple activities such as sitting and standing. As
time passes, the model might want to learn new activities such as walking to be more
beneficial to a very active Alice. A static model will learn new activities but will fail
to predict older activities correctly due to catastrophic forgetting (CF) [27]. CF means
the abrupt and near-complete loss of knowledge obtained from previous tasks when the
model learns new tasks. Specifically, weights in a model important to previous task A
(i.e., previous task) are changed to optimize towards task B (i.e., new task), which often
leads to the degradation of task A’s performance. With addressing CF issues, continual
learning [3] allows deep learning models to learn incrementally (adapt or accommodate
new classes/behaviors) and obviates the need to be trained every time from scratch, which
might waste valuable resources on Alice’s device.

In practice, enabling deep learning models to continually learning is very challenging due
to the CF problem. Since CF was first identified in Multi-Layer Perceptrons (MLPs), many
researchers have proposed methods to mitigate it [28, 29, 13, 30, 31] and evaluate it using
small and large datasets [2, 32, 33]. However, the proposed methods are mainly evaluated
in the field of computer vision with MLPs or Convolutional Neural Networks (CNN) based
deep learning models. [t is unclear whether these methods are viable in sensor-based
applications, where the modality of the data is significantly different from images, and
sequence information needs to be captured [34]. Moreover, most of the existing Incremental
Learning (IL)* techniques [35] do mot take into account the resource requirements of these
devices, which may make them inapplicable to embedded and mobile systems deployments.
There is a clear need to understand the resource consumption limitations of existing
continual learning methods to see if they are applicable to resource-constrained edge
platforms.

To address the aforementioned limitations of prior work, we conduct the first systematic
study to investigate the CF problem on mobile and embedded sensing applications using
various IL methods. First, we employ three datasets from the widely researched application

n this work, we use continual learning (CL) and incremental learning (IL) interchangeably.

14

of Human Activity Recognition (HAR) [4] based on accelerometer, gyroscope, and magne-
tometer data. Next, we include two datasets from Gesture Recognition (GR) [5] based on
surface electromyography (SEMG). We further incorporate an Emotion Recognition (ER)
dataset [6] based on speech among audio sensing tasks to make our results generalizable to
different modalities across diverse applications. Second, we examine trade-offs of studied
IL methods in terms of their performance, storage footprint, computational costs, and
the peak memory limit to consider the feasibility and applicability of the IL methods on
mobile and embedded devices. To investigate the system limitations imposed by different
configurations of IL, we implemented the IL framework on two types of devices with
different specifications — an Nvidia Jetson Nano GPU (used in mobile robotics and tablets)
and a smartphone (One Plus 7 Pro) CPU — with respect to computational costs, storage,
and memory footprint.

Overall, the major contributions and findings of this paper are:

First, we conduct a systematic investigation of the CF problem on mobile and embed-
ded applications using six state-of-the-art IL methods falling under three paradigms:
regularization ((1) Elastic Weight Consolidation: EWC [29], (2) Synaptic Intelligence:
ST [36], and (3) Online EWC [37]), replay ((4) Learning without Forgetting: LwF [28]),
and replay with exemplars ((5) Incremental Classifier and Representation Learning:
iCaRL [13] and (6) Gradient Episodic Memory: GEM [31]). In addition, to make our
study generalizable across different modalities of data, we perform analysis on six datasets
of three different sensing applications (HAR, GR, and ER).

Second, to evaluate CF in real-life scenarios, we employ Sequential Learning Tasks
(SLTs), successively learning two or more sub-tasks Dy, ..., Dy, instead of learning a single
task D [32]. Learning new tasks continuously becomes vital since the number of classes
(activities or users) and the environments of edge applications often change over time. We
adopt a class-incremental learning setup where each task contains distinct classes, which
fits well with practical application scenarios (see §A.3.1 for detail). Specifically, we try
three scenarios: adding only one class to a base classifier (simple), adding half of the
classes, N/2, to a base classifier at once (mildly complex), and a very practical (complex)
scenario where half of the classes, N/2, are added incrementally to a base classifier one by
one, where N is the total number of classes. Through extensive experiments, we find that
all IL methods perform well when presented with simple scenarios but fail in the complex
scenario, except for iCaRL. The main reason for iCaRL’s strong performance is its use of
exemplar samples. To the best of our knowledge, we are the first to train and implement
IL methods to run on mobile and embedded systems, with the aim to build an end-to-end
on-device continual learning system and to evaluate trade-offs of studied IL methods in
terms of their performance, storage, and computational costs, as well as the peak memory
usage.

15

Third, we find that iCaRL and GEM require a modest amount of storage, which seemingly
is not an issue on many modern devices as they support a large amount of storage (in
order of a few GBs). Even at a maximum number of stored exemplars (i.e., 20% - 40%
of training samples), iCaRL and GEM require only 2 MB-115 MB. However, GEM and
EWC-based algorithms are computationally expensive in that the average IL time varies
from 46.3-2,660 seconds on Jetson Nano. For all other algorithms, it ranged from 8.46-150
seconds on both Jetson Nano and a smartphone. iCaRL, in particular, needs less than a
minute on a smartphone to do IL on a per-task basis and operates within a reasonable peak
memory overhead (196-2,127 MB). In sum, our study shows that simple deep learning
architectures such as one and two-layer long short-term memory (LSTM) [38] can be
trained entirely on the smartphone, thereby ensuring complete user privacy.

Finally, based on our findings, we present a series of lessons and guidelines to help
practitioners and researchers in their use of continual deep learning for mobile sensing
applications.

In addition to the above contributions, we adapt the experimental protocol proposed
in [32] which considers learning only two tasks. We extend this protocol so that it can
incorporate any number of tasks (D1, ..., Di) in an incremental manner and identify the
best performing IL model by permutating a set of hyper-parameters and IL-method-specific
parameters (see §A.3.3 for detail). Finally, we believe that our work and findings open the
door to the use of continual learning in edge devices and applications.

A.2 Related Work

We begin by reviewing continual learning approaches and empirical studies to evaluate
them, followed by applications of deep learning in the mobile and edge sensing domain.

A.2.1 Continual Learning

Continual learning studies the ability to learn over time from a coming stream of data by
incorporating new knowledge while retaining previously learned experiences [3]. Continual
learning is also called incremental learning (IL) [13], lifelong learning [3], and sequential
learning [27]. In a continual learning setup, learning methods typically suffer from
CF [27, 39], that is, a learned model experiences performance degradation on previously
learned task(s) (e.g., task A) as information relevant to a new task (e.g., task B) is
incorporated. It is because the learned parameters of the network that are optimized to
perform well in task A (i.e., important weights to task A) are changed to maximize/minimize
the objective/loss of task B. In recent years, many researchers have focused on solving
the CF issue by proposing a range of IL approaches. The first group of approaches is
a regularization-based method [29, 36, 37, 40] where regularization terms are added to

16

the loss function to minimize changes to important weights of a model for previous tasks
to prevent forgetting. Another group of approaches is a replay-based method [28] where
model parameters are updated for learning a representation by using training data of the
currently available classes, which is different from replay with exemplars-based method
[13, 31, 8] where updating the model requires training data from the new class and also
few training samples from earlier classes.

The proposed 1L methods to solve CF are empirically evaluated using small and large
datasets [2, 32]. However, these empirical studies either adopt only a few methods [2, 32]
or neglect resource constraints of mobile and embedded devices with respect to storage
and latency [32, 41]. To fill this gap, we perform a systematic study on six most cited (or
state-of-the-art) IL methods from three representative categories of IL approaches with
three continual learning scenarios with different difficulties. Also, we conduct the first
comprehensive study of generalizability and trade-offs between performance, storage, and
computational costs among the studied IL methods on mobile and embedded devices.

A.2.2 Deep Learning for Mobile Sensing Systems

Deep learning is increasingly being applied in mobile and embedded systems as it achieves
state-of-the-art performances on many sensing applications such as activity recognition [42,
43], gesture recognition [44], and audio sensing [45]. [42] experimented with three variants
of deep learning approaches such as feed-forward, convolutional, and recurrent neural
networks on HAR datasets, and present guidelines for training neural networks. [46]
proposed the DeepConvLLSTM model in which convolutional layers extract the features
from raw IMU data, and Long-Short Term Memory (LSTM) recurrent layers capture
temporal dynamics of feature activations to improve the performance of HAR.

Deep neural networks have also helped applications that need to recognize hand gestures
using surface electromyographic (SEMG) signals generated during muscle contractions [47,
48, 49]. [5] proposed a self-re-calibrating framework which can be updated to maintain the
model’s performance so that it does not need users’ additional labels for re-training. [47]
used SEMG of the forearm to classify finger touches with their proposed neural architecture
combining convolutional, feed-forward, and LSTM layers.

Many works have investigated using deep learning for audio sensing tasks including
Emotion Recognition, Speaker Identification [50], and Keyword Spotting. [51] proposed
a deep learning modeling and optimization framework that specifically targets various
audio sensing tasks in resource-constrained embedded systems. Keyword recognition [52]

achieved 45% relative improvement with a deep learning model compared to a competitive
Hidden Markov Model-based system.

In contrast to these works, we investigate whether current IL methods can enable a practical
continual learning system for mobile and embedded sensing applications on-device and

17

Base-Model Training Incremental Training Incremental Model

- o L3

o3\
q Task1| 4 HY + Task2| f* ﬂ S0’ # n -
A(;{}),M Activity M+1 OO o Activity 1 Activity 2 Activiy M Activity M+1

Activity 1 Activity 2

®
®

Base Model

PJo Jo Po
oo

Figure A.1: Overview of our continual learning system.

what the performance implications of such systems are. In addition, to fully understand
the issue of CF in mobile sensing where the modality of the data is significantly different
from image datasets [34] with which the IL methods are typically evaluated, we implement
an end-to-end continual learning framework that evaluates various IL methods in three
embedded sensing applications (e.g., HAR, GR, and ER) with different data modalities
(e.g., accelerometer, sSEMG, and speech).

A.3 Continual Learning for Mobile and Embedded
Sensing Framework

We now present our framework to comprehensively evaluate the performance of various IL
methods for three mobile and embedded applications (HAR, GR, and ER). We first explain
the continual learning setup and three scenarios adopted in our experiments (§A.3.1).
Then, we present six IL methods evaluated in this work (§A.3.2). We then describe the
hyper-parameters of the LSTM based deep learning model and the different IL methods
(§A.3.3). After that, we propose our novel IL model training process in §A.3.4. Next, we
describe the datasets used in this study (§A.4.1). Finally, we provide brief details about
our implementation (§A.3.5)

A.3.1 Continual Learning Setup and Three Scenarios

In this work, we focus on Sequential Learning Tasks (SLT's) from the mobile and embedded
systems domain where new classes can emerge over time. Thus, the learning model has to
continuously learn to accommodate new classes without CF, as would happen in real-life
scenarios. Learning tasks of this type, called SLTs, indicates that a model continuously
learns two or more tasks Dy, ..., Dy, one after another instead of learning a single task
D once [32]. Figure A.1 shows an overview of our continual learning system for sensing
applications using HAR as an illustrative example. A user starts with a model containing
a fixed set of classes on their devices which is then incrementally updated over time as
new classes arrives.

We introduce three scenarios of different levels of difficulties for models to learn continuously
(from easy to difficult scenarios). First of all, inspired by Pfulb et al. [32], we adopt the

18

SLT's consisting of two tasks: D; and D,. Hence, Scenario 1 consists of two tasks, where
the first task contains the N — 1 classes, and the second task contains the other one class
(N is the total number of classes). Scenario 2 includes two tasks where the first task
contains half of the classes, NV/2, and the second task contains the remainder of the classes.
Finally, Scenario 3 deals with a more realistic situation where many tasks are to be learned
sequentially [2]. In the third scenario, we first train a model in the first task with N/2
classes and then incrementally train the model by adding subsequent tasks with one class
(essentially N/2 + 1 tasks). Unlike the first scenario (which has only N different cases of
task permutations), it is not practical to consider every random permutation of classes to
be included in different tasks for the second and third scenarios. Hence, we consider ten
variations by randomly choosing classes in each task for the last two scenarios. Note that
each task consists of disjoint groups of classes as we adopt class-incremental learning [53].

A.3.2 Incremental Learning Methods

As described in the related work section, various methods exist that can mitigate CF in
IL. We describe them in depth as they form the basis of our exploration. To mitigate
CF, there exist three main categories of IL approaches: (1) Regularization, (2) Replay,
and (3) Replay with Exemplars. We select at least one representative method for each of
the above categories. These methods are the state of the art methods (most cited) for IL
and are most often used in machine learning papers for comparison. We now describe the
employed methods.

LSTMs [38]: LSTMs are a type of recurrent neural networks widely used for a sequence
classifier in many applications, specifically for time-series data. We use LSTMs as a base
neural network.

EWC [29]: Elastic Weight Consolidation (EWC) is a regularization based method which
adds a penalty to regular loss function when learning a new task (i-th task), i.e.,

L(0) = Li(0) + A/ziFj(@i —0;)° (A1)

J=0

where L(6) is the total loss, 6 is the network’s parameters, L;(f) is the loss for the new
task, and ©F are the important parameters of all previous tasks. A is a hyperparameter
that controls how much importance should be given to previous tasks compared to the
new task. F'is the Fisher matrix used to constrain the parameters important to previously
learned tasks to stay close to their old values to retain the knowledge of previous tasks
and to be able to learn new tasks simultaneously.

Online EWC [37]: It is a variation of EWC method where the loss function is represented

19

as,
i—1

L(0) = Li() + A/2(6; — ©;_))*> F; (A.2)
5=0
Online EWC eliminates the need to store mean and fisher matrices for each previous task
and only requires the latest mean and running sum of fisher matrices to calculate the
current task’s total loss.

SI [36]: It is another regularization method which is similar to EWC where the loss
function is calculated in the following way,

L(0) = Li(6) + AD_4(6; — 60 (A3)

where k is the subscript for the parameters of the models, A is the strength parameter, 0} is
the parameter value at the end of the previous task, and Q} represents the per-parameter
regularization strength taking into account all previous tasks, calculated as:

i—1

2 (Aeg)z +e (4-4)

J=0

parameter distance Aﬁ,i determines how much a parameter moved between tasks during
the entire trajectory of training. ¢ is the dampening parameter to prevent division by zero
errors. The main difference between SI and EWC is that SI weights importance, wy, is
continuously updated online during training. In contrast, in EWC, the Fisher matrices
(weights importance) are calculated at the end of each task.

LwF [28]: This method relies on adding loss for the replayed data to the loss of the current
task. The replayed data is the input data of the current task which is labeled using the
model trained on the previous tasks to generate target probabilities. The ultimate aim of
the replayed data is to match the probabilities predicted by the model being trained to
the target probabilities (a form of data distillation) and is termed as the loss for replayed
data.

iCaRL [13]: Incremental Classifier and Representation Learning (iCaRL) store data
from previous tasks (i.e., exemplars) to alleviate the CF problem. The exemplars are a
representative set of the small number of samples from a distribution, and those that can
approximate the average feature vector over all training examples are selected as exemplars
(based on herding [54]). The classification is done based on a nearest-class-mean (NCM)
rule using features extracted from the deep learning model, where the class means are
calculated from the stored examples. When new tasks (classes) arrive, iCaRL creates a new
training set combining the exemplars from all the previous tasks with the data samples

20

of the new task. Then, the model parameters are updated by minimizing a loss function
which encourages the model to output the correct class for the new task (classification
loss) and to reproduce the scores stored in the previous step for the old tasks (distillation
loss) using data samples from the new training set.

GEM [31]: Gradient Episodic Memory (GEM) stores exemplars from the previous tasks
like iCaRL and solves CF as a constrained optimization problem. A parameter update
while doing IL is made depending on whether it will lead to an increase in loss for the
previous tasks. This is calculated by computing the angle between loss gradient vectors of
stored examples and the proposed parameter update. If the calculation suggests no loss,
then the update is done straight away. Otherwise, the parameter is updated by projecting
gradient in such a way that it will incur a minimal loss for the previous tasks.

Our Contribution: It is worth noting that the above six IL methods are known in
the machine learning literature from a theoretical point of view. Yet, they are not off-
the-shelf methods that can be simply used to any dataset to enable continual learning.
As will be shown in Section A.5, there exist many factors affecting the performance and
applicability of the IL methods in real-world deployment such as the complexity of the
continual learning scenario, resource availability of mobile and embedded devices, and
choice of hyper-parameters. Thus, a distinctive contribution of our work is a comprehensive
evaluation and comparison study of the IL methods in diverse sensing applications and
is to develop an end-to-end and on-device IL framework that can investigate trade-offs
between performance, storage requirements, and latency.

A.3.3 Characterization of Hyper-parameters

We categorize hyper-parameters into three types and IL-method-specific parameters. First
of all, we use architectural hyper-parameters which cannot be changed when learning
new tasks, e.g., the number of hidden layers L and its size S. We then use learning and
regularization hyper-parameters which can be adaptable when learning new tasks. For
example, a learning rate € and A term in L2-regularization can be modified during training
over time. We denote the set of hyper-parameters as P.

IL-method-specific parameters: Each IL method has method-specific parameters to
control the behaviors of the model. For example, in regularization-based methods [29,
55, 36, 28|, importance parameter A is often utilized to modulate how much importance
a model puts on previous tasks or a current task. The importance parameter can be
adaptable while learning new tasks in our IL model training process (Algorithm 1). In
addition, in replay with exemplars-based methods [13, 31], the size of the storage budget
is used to balance between storage requirements and the performance of a model. Since
the budget size is difficult to be adaptable after completion of the first task, it is given as
an input in our experimental protocol (Algorithm 1).

21

© 00 N o ok~ W N =

I
e N e)

Algorithm 1: IL model training process to determine the best model by incrementally
learning tasks up to task k
Input: Tasks Dy, ..., Dy, model m, budget B, epochs £
Input: The number of hidden layers L, Hidden layer size S
Input: IL-method-specific parameters P;y,, learning rate €
Output: The best model with hyper-parameter vector p*
forpe (LUS) do
fort=1,£ do

Train model m, using training set of Dy with p

Test model m; using test set of Dy

Store performance ¢,

Update the model m; ,~ with max ¢
for p € (P;LUe) do
Initialize model mgy with my ;-
for j =2,k do
fort=1,£ do
Train model my using training set of D; with p
Test model msy using test set of U{ZlDl
Store performance g;;
Update the model my, ,» with max g

Hyper-parameter setting for experiments: We first fix several hyper-parameters
as default values. We set dropout rates for all tasks as 0.2 and 0.5 in input and hidden
layers of a model, respectively [56] and a batch size of 32 with Adam optimizer set to
a default learning rate of 0.001 for task 1 (D). After that, we vary hyper-parameters
for all models in each dataset. Specifically, in the task 1 (D;), we vary architectural
hyper-parameters as follows: L C {1,2}, S C {32,64}. In subsequent tasks from task 2 to
k (D, ..., D), we fix architectural hyper-parameters but vary adaptable hyper-parameters
and IL-method-specific parameters as follows: (1) e C {0.001,0.0001} for all models, (2)
A C {1,10,10% 103,10% 10%,10%} for both EWC and Online EWC, (3) v C {0.5,1.0} for
Online EWC, (4) ¢ € {0.2,0.4,0.6,0.8,1.0} for SI. We denote varying IL-method-specific
parameters as Prr. For replay-based methods, the losses of the current and replayed data
are weighted according to the number of tasks a model has learned so far by following [53].
Note that budget size, B C {1%, 5%, 10%, 20%}, is given as an input and fixed for replay
with exemplars-based methods while other hyper-parameters are permuted. Since the
total number of samples for each dataset is different, we use a ratio from the total training
samples rather than a fixed number of samples for the budget size.

22

A.3.4 Model Training Process

We extend protocol [32] to incorporate multiple tasks up to task k (D, ..., Dg) in an
incremental manner based on our characterization of hyper-parameters and IL-method-
specific parameters. Algorithm 1 describes our protocol in which we only utilize training
data of a current task j (< k) for model learning and test data of previously learned tasks
up to task j for evaluation.

Given an SLT consisting of Dy, Ds, ..., Dy and a model m, the goal is to find a vector of
hyper-parameters p* which produces the best performance ¢ after incrementally training
all tasks up to task k. For the first step, we find the best performing hyper-parameters
in task 1 (D;) by searching among the set of architectural hyper-parameters (lines 1-5
in Algorithm 1) and update the model m,« with the found hyper-parameters (line 6).
The next step is to find the best model by searching among the set of learning hyper-
parameters and IL-method-specific parameters in subsequent tasks from task 2 to k (lines
7-13). Finally, we select the best model which shows the highest performance based on test
sets after incrementally trained up to task k (line 14). Note that to facilitate the extensive
experiments performed in our study and to make a fair comparison among the IL methods
(Section A.5), we first identify the best architectural hyper-parameter (from L C {1,2}
and S C {32,64}) and then use the found hyper-parameter across the different IL methods.
The final LSTM architecture we used for each dataset are reported in Table A.1.

A.3.5 Implementation

We implemented our continual learning framework on Nvidia Jetson Nano and One Plus
Pro smartphone platforms. All the IL algorithms were explored on Nano GPU, and we
used PyTorch 1.1 to implement the framework. Keeping in mind that Scenario 3 is the
most practical continual learning scenario and iCaRL is the best performing IL approach,
we only implemented iCaRL for Scenario 3 on the smartphone’s CPU (as an Android app)
using the DeepLearning4j library. The smartphone app size is 134 MB. We choose CPU
on the smartphone as it provides an upper bound on the performance of any system and
is more challenging to implement. We envisage that if a system can work (or at least
feasible) on a CPU, then it would be much easier and faster to run similar systems on
accelerators such as GPU. When working on a dataset, we first loaded the training data
pertaining to all the tasks in the memory to make the continual learning process work
faster. As a limited amount of memory is allocated to each Android app, we set large heap
property in the app to True to use larger heaps for our app. We still encountered memory
issues, especially when working with large datasets such as Skoda, which we solved by
using memory-mapped files.

In addition, we employ a weighted F1-score which is more resilient to class imbalances
as the employed datasets (see §A.4.1 for details) are not balanced [?, 42]. As in [57], we

23

Table A.1: Overview of the employed datasets.

Application ‘ Dataset Dimension # Train Data # Test Data # Classes Layer/Size
HHAR 20 x 120 59,403 7,721 6 2/64
PAMAP2 33 x 52 35,263 5,209 12 1/64
Skoda 33 x 60 10,047 1,193 10 1/64
GR Ninapro (Per Subject) 40 x 12 3,118 639 10 1/64
Ninapro (LOUO) 40 x 12 30,488 3,759 10 1/64
ER | EmotionSense 20 x 24 2,011 224 14 2/64

applied a weighted loss to all evaluated methods by estimating the inverse class distribution
which gives more importance to the loss of a class with fewer samples. Also, as deep
learning models can overfit to small datasets such as EmotionSense, with our framework,
we experimented with shallow and deep neural network architectures and found that deep
architectures show marginal improvement over shallow architectures, indicating that the
overfitting is not an issue.

A.4 Experimental Setup

Before we present the findings of this work in Section A.5, we describe experimental setup
for conducting a comprehensive evaluation of three continual learning schemes in mobile
and embedded sensing applications. We first describe six datasets in three different sensing
applications (§A.4.1) and evaluation metrics adopted for systematic comparison of the IL

techniques and their trade-offs between system aspects (e.g., storage and computational
costs) (§A.4.2).

A.4.1 Datasets

We focus on three sensing applications (e.g., HAR, GR, and ER) as they are some of the
most popular applications in the mobile sensing. Table A.1 shows the overview of the
employed datasets.

Human Activity Recognition (HAR)

For the HAR application, we used three datasets: (1) HHAR [58], (2) PAMAP2 [59],
and (3) Skoda [60]. These datasets contain many real-life activities (e.g., walking, sitting,
and cycling) obtained using Inertial Motion Units (IMUs), which contain accelerometer,
gyroscope, and magnetometer data of mobile and wearable devices. We next present the
detailed summaries of the three datasets.

HHAR: This dataset considers six different daily activities of users The data was recorded
from nine participants, where they followed a scripted set of activities with eight smart-

24

phones and four smartwatches of different brands and models. Having various devices
for recording makes HHAR an excellent benchmark to study heterogeneity of HAR (i.e.,
sensor biases, sampling rate heterogeneity, and sampling rate instability). We follow the
preprocessing steps as proposed by Yao et al. [61]. Raw measurements of both accelerom-
eter and gyroscope are segmented into 5-second samples. Each sample is divided into
time intervals of 0.25s. After that, we apply a Fourier transform to each time interval. It
produces d x 2f dimensional vectors per time interval, where d is the dimension for each
measurement and f is the frequency with magnitude and phase pairs, resulting in 120
dimensions. We adopt leave-one-user-out (LOUO) for evaluation [61]. One user (i.e., the
first participant) is used for testing, and the remaining users are left for training.

PAMAP2: In this dataset, nine subjects carried out various daily living activities and
sportive exercises. IMU data (accelerometer, gyroscope, magnetometer), heart rate, and
temperature data were recorded from body-worn sensors attached to the hand, chest, and
ankle. The resulting dataset has 52 dimensions, and more than 10 hours of data were
collected. We follow a preprocessing protocol used by Hammerla et al. [42]. The sensor
data are downsampled to 33Hz. After that, all samples are normalized to zero mean and
unit variance. Also, to be consistent with the previous works [42, 23, 62], we use runs 1
and 2 from the sixth participant for testing and remaining data for training.

Skoda: The Skoda dataset contains activities of assembly-line workers in a manufacturing
scenario. One subject wore 20 3D accelerometers on both arms. Following the preprocessing
steps [46, 23], we employ raw and calibrated data from ten accelerometers placed on the
right arm, resulting in input data of 60 dimensions. The data are downsampled to 33Hz
and normalized to zero mean and unit variance. For experiments, the last 10% of each
class is used as the test data and the remaining as the training data. Note that Skoda
consists of one subject, i.e., subject dependent evaluation.

Gesture Recognition (GR)

We employ the Non Invasive Adaptive Prosthetics (Ninapro) database [63] for the GR
application in our experiments as it consists of surface electromyography (sEMG) signals
and thus can provide different sensor modalities than IMU sensors present in HAR datasets.

Ninapro (Per Subject): The Ninapro database is widely used in research on the hand
movement recognition application. We employ Ninapro Database2 (DB2) in this study.
It includes sEMG data recordings from 40 subjects while performing several repetitive
gestures such as wrist movements, grasping and functional movements, and force patterns.
Following, Li et al. [64], we select ten types of hand gestures commonly used in daily life.
After that, we downsample the SEMG data to 200 Hz and normalize them to zero mean
and unit variance. We used a sliding window size of 200 ms with a 50% overlap [5, 65]. We
select a subject who has the most amount of data samples for subject dependent (i.e., per

25

subject) evaluation. After that, we use the fifth repetition for a test set and the remainder
for training.

Ninapro (LOUO): To have consistent evaluation with the HAR application we adopt
LOUO evaluation for the GR application using the Ninapro dataset. We select the top
ten subjects having more data samples than others. After that, we use a subject with the
least data samples for testing and the remainders for training. The preprocessing steps
are the same as in Ninapro (Per Subject).

Audio Sensing Task

We pick Emotion Recognition (ER) since it is one of the most widely adopted audio
sensing tasks. We employ the EmotionSense dataset [6] which was collected by recording
human participants’ emotions as well as proximity and patterns of conversation using an
off-the-shelf smartphone. This dataset has been used in multiple studies to understand
the correlation and impact of interactions and activities on the emotions and behavior of
individuals in various settings [66][45][24].

EmotionSense: The EmotionSense dataset contains audio signals which represent 14
different emotions. In the EmotionSense dataset, each measurement corresponding to a
particular emotion (or class) is based on a 5-second context window. Following Georgiev
et al. [51], we extract 24 log filter banks [67] from each audio frame over a time window
of 30 ms with 10 ms stride. Each sample contains 500%24 = 12,000 features where 1-24
features are filter banks from the first 10 ms, and 25-48 features are filter banks for the
next 10 ms and so on. After that, as our preprocessing steps, we downsample each sample
measurement by averaging corresponding 24 filter banks of every 250 ms (or 25 consecutive
windows) without any overlap to reduce the length of the input sequence for a learned
neural network. We normalize each window to zero mean and unit variance.

A.4.2 Evaluation Metrics

We consider how much an IL method forgets previous tasks and learns new tasks after
it was trained from task 1 to k to assess the actual performance of IL methods [68] by
considering the following metrics.

Average Performance Measure (A): We denote the performance measure of a model
on the j-th task (j < k) as ax; € [0,1] after the model is trained from task 1 to k. The
average performance measure at task k is defined as follows:

k
1
Ay = 7 ; Ak,j (A.5)

26

The output space consists of Uleyj, and ay; is based on a weighted Fl-score in this
work. Note that a; ; can be used to indicate an accuracy, proportion of correctly classified
activities or gestures.

Forgetting Measure (F): The forgetting measure provides an estimate of how much a
model forgets about the task given its present state. The forgetting for the j-th task after
the model has been trained up to task £ > j can be quantified as:

ff = max ai; — a;, Vi <k (A.6)

The average forgetting at k-th task is denoted as Fj, = ﬁ Zf;ll ka by normalizing the
number of tasks seen previously. The lower the F}, the less forgetting on previous tasks.

Intransigence Measure (I): Intransigence is defined as the inability of a model to learn
new tasks. To quantify the inability to learn, the joint model, often considered upper
bound, which has access to all the datasets seen so far (Uf_D;) is compared and its
performance is denoted as aj. We then denote the intransigence for the k-th task as:

Ik = GJZ — Q. k <A7>

where ay j, represents the performance of a model on the k-th task trained up to task k.
Lower I implies that a model performs as close as a joint model or performs even better
than the joint model when intransigence is negative (I < 0). Note that we use ay) and
I}, as the main performance indicators of a model since we are interested in the current
performance of the model on all learned tasks from 1 to k.

Note that in addition to metrics mentioned above, we also report storage and latency
required to execute each IL method.

A.5 Findings

We now present the results of our evaluation. Firstly, we compare the performances of
different IL methods on HAR, GR, and ER tasks using two basic scenarios (Scenario 1
and 2) in §A.5.1. Then, we study the performance of IL methods for Scenario 3 in §A.5.2.
We examine the generalizability of IL methods across different datasets (§A.5.3). Then,
we discuss the trade-offs of IL methods with respect to the storage, computational costs,
and memory footprint. (§A.5.4). Finally, in §A.5.5, we investigate the effect of iCaRL
specific parameters on the performance.

27

0.8
= -
'S W \
g 0. 1 g 0.6 \
= 1 = \
5 1 < So
20.4 i 20.4 T ————
2 | 2
0.2 N 0.2
0.0 0.0
1 6 11 16 21 26 31 36 40 1 6 11 16 21 26 31 36 40
Epoch Epoch
(a) HHAR (b) PAMAP2
1.0
0.8
= —
w - T8
T 0.6 A D06
- e -
< e ———— £
20.4 20.4
9 (]
s s
0.2 0.2
0 0.0
1 6 11 16 21 26 31 36 41 46 51 5660 1 36 71 106 140
Epoch Epoch
(c) Skoda (d) Ninapro (Per Subject)

-
o

=

o

o
o

o

0o

- g
'S
g 06 T 06
£ £
D04 %0_4
2 2
0.2 0.2
0.0 e e P 0.0l
1 6 11 16 21 26 31 36 40 1 46 91 136 180
Epoch Epoch
(e) Ninapro (LOUO) (f) EmotionSense
= = Joint 0= EWC =t LWF .+ GEM
- = None i G -+ iCaRL

Figure A.2: The performance comparison of the five IL methods including two baselines
in Scenario 1 on each dataset.

28

0.8 0.8
- -~
'S '8
T 0.6 g 06
- -
< =
D04 D04
() [}
H S

o

N
o
N

o
o

o

o

1 6 11 16 21 26 31 36 40 1 6 11 16 21 26 31 36 40
Epoch Epoch
(a) HHAR (b) PAMAP2
1.0 oy [e 1.0
7 e = SUCaRE
0.8 o 0.8
E :D e gt :
T 06 7 E 0.6
= b
D04 204
(7] [}
s s
0.2 0.2
0.0 0.0
1 6 11 16 21 26 31 36 41 46 51 5660 1 36 71 106 140
Epoch Epoch
(c) Skoda (d) Ninapro (Per Subject)

=

o
=
o

o
©
=}
o

= -
. w
T 06 T 06
- -
< £
D04 D04
() [
H 2
0.2 0.2
0.0 0.0
1 6 11 16 21 26 31 36 40 1 46 91 136 180
Epoch Epoch
(e) Ninapro (LOUO) (f) EmotionSense
= = Joint 0= EWC v LWF .+ GEM
= == None e S| -« jCaRL

Figure A.3: Performance comparison in Scenario 2.

A.5.1 Performance on Simple and Mildly Difficult Tasks

We show the best average weighted F1-scores across all runs for different IL methods for
Scenario 1 and 2 for different datasets in Figure A.2 and Figure A.3, respectively. For

29

HAR and GR applications, the results of iCaRL/GEM with the budget size of 20% are
shown in Figure A.2 and Figure A.3 since the models with the budget size of 20% show
the best performance. Then, for the ER application, the results of iCaRL/GEM with the
budget size of 40% are shown since the EmotionSense dataset has the least number of
training samples, requiring more budget size in ER than the other two applications. Joint
refers to the case when training data is available for all the classes from the beginning. It
is a classic case to train a model with all data at once and serves as the upper bound in
many cases. INone refers to the case when no IL method is applied to solve CF. The white

part in the figure shows performance on Task 1, and the grey part shows performance for
Task 2.

The results show that without any IL method (None), the performance drops sharply as
soon as a new task is encountered. The decline in performance is as drastic as 60% in both
scenarios. iCaRL provides the best performance in Scenario 1, which stays very close to
the performance obtained with the joint model. It is because iCaRL stores representative
exemplars and relies on a nearest-class-mean (NCM) rule that is robust against changes in
the data representation [13]. In fact, all the IL methods effectively solve the CF problem
and achieve comparable performance to the joint model (between 5% and 15%) after only
running for a few epochs (5 or less in many cases). One can conclude that, in general, the
existing IL methods we analyzed can solve the CF issue on mobile and embedded sensing
applications for simple scenarios.

However, the same cannot be said for the performance in Scenario 2. Ezcept iCaRL, none
of the other methods seems to solve the CF issue for the mildly complex scenario (i.e.,
Scenario 2). The performance drop is up to 60% when the performances between IL
methods and the joint model are compared. iCaRL remains the best performing method
with its weighted F1l-score close to that of the joint model (within 10%). GEM performs
the second-best (within a few epochs) on HAR datasets while EWC performs well for GR
and ER datasets. Although GEM is a replay with exemplars-based approach like iCaRL,
it never matches the performance of iCaRL due to its reliance on using gradients and not
the actual examples themselves. Another reason might be that iCaRL selects the best
examples to be stored based on herding (a sort of prioritization), while GEM employs
selecting examples randomly which can be less informative. A regularization-based method
such as SI and a replay only approach such as LwF perform poorly across all datasets.
The weighted Fl-score degrades roughly 40-50% of what can be achieved by the joint
model. As indicated by [69], the performance of LwF significantly decreases when the
model learns a sequence of tasks drawn from different distributions. In other words, when
tasks learned by LwF are not sufficiently related, enforcing the new model to give similar
outputs for the old task may hurt the model’s performance. SI relies on the weight changes
in a batch gradient descent which can overestimate the importance of the weights and
thereby lead to lower performance.

30

Note that iCaRL employs a different way (i.e., NCM rule) to classify data samples (perform
inference) than other methods (including None and Joint) which use cross-entropy based
classification. Also, for GEM, it minimizes the loss on the current task by using inequality
constraints, avoiding its increase but allowing its decrease. Therefore, iCaRL and GEM
can obtain different weighted F1-scores than the other methods in task 1. Otherwise,
ideally one would assume all methods (e.g., None, EWC, SI, LwF in our study) to get the
same performance in the first task as it only involves learning a baseline LSTM model
without any IL. Also worth mentioning is that initially (especially task 1) IL methods can
achieve higher weighted F'1-scores than the joint model. It is because their performance is
based on classifying a smaller number of classes than the joint model, where all classes
need to be classified from the first epoch.

A.5.2 Performance on Many Sequential Tasks

Figure A.4 shows results for Scenario 3. Recall that Scenario 3 presents the case when
classes are added one by one to an already existing deep learning model, which will happen
in real-life scenarios and is the most challenging task for any IL method. Note that this
graph is shown differently than the graphs for Scenario 1 and 2 (epoch based) as in epoch
based graph, we would have only two data points to show as there were only two tasks.
In Scenario 3 the number of tasks will be N/2 + 1 for N classes. Without the IL method
(None), CF happens, and the weighted Fl-score almost always lies between 0%-10%.
1CaRL 1is the best method and appears to solve the CF issue for the challenging third
scenario. Its performance is nearly equal to the joint model in most of the cases. All other
methods do not solve the CF issue, and the performance suffers severely as more tasks are
added to the system especially with LwF and SI.

A.5.3 Generalization

Table A.2 shows the results in a summarized way for all the datasets and IL methods
evaluated in our study. Ay refers to average performance on all tasks while ay ; shows the
weighted Fl-score at the end of learning all tasks. Fj, tells us how good an IL method
is in retaining old knowledge about previous tasks. Whereas I, means how much an IL
method is good at learning new tasks. Note that the higher the values of A and ay,j, the
better the model is. However, for F}, and I, a low value indicates a better model since
low F} and I means that the model forgets knowledge of previous tasks less and performs
as close as a joint model, respectively. iCaRL is one of the best-performing methods on
all metrics across all datasets. iCaRL can learn new classes (tasks) while retaining old
knowledge and maintain high performance even in the most challenging scenario. Given
that small errors are allowed when performing HAR, GR and ER, iCaRL alleviates the
issue of CF to a large extent. The same is not true for all other IL methods. Although
LwF allows previous knowledge to be largely retained (low F' value), it does not learn

31

0.8
v -
= <
E 0.6 E 0.6
2004 2004
= =

0.2 0.2

0.0 0.0

1 2 3 4 5 6 7
Task
(b) PAMAP2

1.0 1.0

0.8
e -
= <
g0 :
= =
2004 20
= =

0.2

0.0

1 2 3 4 5 6
Task Task
(c) Skoda (d) Ninapro (Per Subject)

o
—
=)

o
%0

o

o0

o

>
o
=

<
o~

Weighted F1
=)
S

Weighted F1

e
o

o
o

g

=
=]
=

1 2 3 4 5 6 T 2 3 4 5 6 71 8
Task Task
(e) Ninapro (LOUO) (f) EmotionSense
= = Joint =O= EWC == S| ={1- iCaRL

= = None == Online EWC == LwWF =<l GEM

Figure A.4: The performance comparison in Scenario 3. All reported results are averaged
over 10 trials, and standard-error intervals are depicted.

new tasks easily and thus has low performance in general. SI is neither good at learning
new tasks (high I) nor at remembering old knowledge (high F'). EWC and online EWC

32

Table A.2: Average performance of different methods in all scenarios on HAR, GR, and
ER.

Scenario Methods ‘ HAR GR ER
‘ Ay, F A k I ‘ Ay, F Q. k I ‘ Ay F Q. k I

None 0.55 0.35 0.54 036|022 029 020 032047 0.11 044 0.16
EWC 0.88 0.01 0.86 0.03|0.49 0.01 047 0.05]0.60 0.01 0.58 0.03
Sl 0.85 0.03 0.81 0.07|045 0.04 042 0.10]0.57 0.01 0.54 0.07
LwF 0.84 0.02 0.79 0.10 | 0.47 0.02 044 0.09 | 0.57 0.01 0.54 0.07
iCaRL 0.89 0.01 0.88 0.01|0.51 0.01 049 0.03]0.57 0.02 0.56 0.05
GEM 0.88 0.01 0.87 0.02|0.46 0.03 043 0.09 | 0.57 0.01 0.54 0.06

None 030 0.76 041 048|020 048 023 0.29]0.27 045 027 0.34
EWC 0.77 0.06 0.65 024|047 0.06 035 0.17]0.55 0.01 0.39 0.22

9 SI 0.64 0.26 0.60 0.29|0.31 0.31 029 0.23]0.38 0.27 032 0.29
LwF 0.70 0.03 048 041|045 0.06 031 0.21]0.52 0.04 035 0.26

iCaRL 0.89 0.05 0.86 0.03|0.53 0.09 0.51 0.02]0.57 0.07 0.53 0.08

GEM 077 013 0.71 0.18 039 0.19 031 0.21]0.51 0.08 037 0.24

None 0.22 0.21 0.10 0.790.09 0.17 0.05 048 0.18 0.16 0.12 0.49

EWC 0.75 0.01 056 034|044 0.01 031 021046 0.01 030 049

Online EWC | 0.72 0.03 0.59 0.30| 044 0.01 030 0.22|0.45 0.01 0.30 0.31

3 SI 0.59 0.10 0.42 047|032 0.07 022 031042 0.02 0.24 0.36

LwF 0.53 0.06 0.34 0.55|0.20 0.08 0.12 040]0.29 0.11 0.18 043
iCaRL 0.86 0.01 0.79 0.10 | 0.53 0.01 045 0.07]0.62 0.12 048 0.13
GEM 0.70 0.07 0.57 032033 0.08 022 031033 0.02 0.16 0.44

- Jomt [- - 08 - | - - 052 - | - - 061 -

offer a decent alternative to iCaRL without needing extra storage on-device but at the
expense of lower performance than iCaRL. The overall takeaway is that iCaRL can enable
a system to learn incrementally (continuously) in the mobile and embedded sensing domain
(if storage is not such a constraint on a device).

A.5.4 Storage, Latency, and Memory Footprint

Storage: We report the storage overhead of each IL method, as shown in Table A.3. We
first specify the mathematical formulas used to calculate the overall storage requirements of
each IL method to show how much storage the IL method needs with respect to the number
of tasks (7) added, the model parameters (M), and the budget size (B). This point would
help practitioners and researchers easily understand how much storage overhead occurs
when they want to deploy their models with a particular IL method. First of all, LwF
requires no extra storage other than the storage needed to store the model parameters
(M). Then, SI requires a running estimate (wy), the cumulative importance measures
(€21), and reference weights (6;) of importance weights of the current task. EWC stores

33

Table A.3: Storage requirements of IL methods. M refers to the number of model
parameters, T represents number of tasks and B is the storage budget.

Category Method Required Storage
EWC 2x M xT
Reg-based Online EWC 2x M
SI 3x M
Replay-based LwF M
iCaRL M+ B
Replay+Exemplars GEM Tx M4+ B

fisher matrices and means for each task. Unlike EWC, Online EWC is only required to
store one fisher matrix and running means across tasks. Thus, the required storage for
Online EWC does not increase as the number of learned tasks increases. Similar to LwF,
iCaRL also requires the previous task model for knowledge distillation. For GEM, it stores
the gradient of the exemplar set for each learned task. As both iCaRL and GEM rely on
stored examples, their storage demands are mainly driven by the number of examples to
be stored (i.e., budget size, B).

Numerical model sizes (i.e., M + B) are shown in Table A.4 for all the employed datasets
in Scenario 3. Note that we do not add tables containing the results of Scenariol and 2
due to the page limit. However, by reporting the results of Scenario 3 where the storage
requirements of various IL. methods are greater than or equal to those of Scenario 1 and
2, we aim to present the upper bound of the required storage. Besides, the reported
numerical sizes of storage requirements in Table A.4 are based on IL methods with the
largest model in our experiments (i.e., number of LSTM layers (L = 2) and the number
of hidden units (S = 64)) to capture the upper bound to practically operate IL methods
on embedded and mobile devices. Here we take the Skoda dataset to further explain our
findings as it represents an ideal use case scenario where IL methods need to be applied
to personal mobile devices (single-user scenario with modest dataset size). In the Skoda
dataset, replay with exemplars methods such as iCaRL and GEM requires at most around
17 MB, and other IL methods have even smaller storage requirements. For EmotionSense
dataset where we use up to 40% budget, iCaRL needs less than 2 MB, and GEM needs
less than 3.4 MB at most. Even with the largest dataset of HHAR in our experiments,
the storage requirements are constrained within less than about 115 MB, which falls well
within the storage capacity of modern embedded devices and smartphones. Many modern
mobile and embedded devices already support a large amount of storage (in order of GBs).

In summary, the amount of storage required to practically enable continual learning on
many modern edge platforms such as Nvidia Jetson or Raspberry Pls and smartphones is

34

Table A.4: Storage requirements of IL methods for all datasets - Scenario 3. Units are
measured in MB.

IL Method HHAR PAMAP2 Skoda Ninapro Ninapro EmotionSense

(Per (LOUO)
Subject)

EWC 2.601 3.599 3.177 2.587 2.587 3.663
Online EWC 0.650 0.514 0.529 0.431 0.431 0.458
SI 0.975 0.771 0.794 0.647 0.647 0.687
LwF 0.325 0.257 0.265 0.216 0.216 0.229
iCaRL (1%) 5.990 2.676 1.051 0.270 0.805 0.257
iCaRL (5%) 28.838 12.341 4.187 0.512 3.190 0.407
iCaRL (10%) 57.350 24.421 8.179 0.805 6.179 0.607
iCaRL (20%) 114.374 48.658 16.162 1.410 12.141 0.981
iCaRL (40%) - - - - : 1.755
GEM (1%) 6.989 4.205 2.350 1.351 1.884 1.862
GEM (5%) 29.817 13.874 5.537 1.583 4.278 2.016
GEM (10%) 58.372 25.996 9.532 1.884 7.274 2.217
GEM (20%) 115.444 50.240 17.476 2.485 13.266 2.603
GEM (40%) - . - ; : 3.374

not excessive, as evident from Table A.4. Note that tuning appropriate parameters in the
IL method would still allow IL to perform effectively, i.e., ensuring good performance with
a reasonable budget size (discussed in §A.5.5).

Latency: The average training and incremental learning time to execute different IL
methods are illustrated in Table A.5 for all the employed datasets in Scenario 3 on Jetson
Nano? which is an edge platform having four cores, 4 GB RAM and a GPU and often used
in mobile robotics and can be used in tablets. Training time represents the usual training
time involved in learning a neural network including updating weights, back-propagation,
etc. GEM is computationally the most expensive. On small datasets of Ninapro (Per
Subject) and EmotionSense, IL time is around 57.3-85.2 seconds. Then, on the largest
dataset of HHAR, IL takes up to 2,660 seconds. It is because gradient computation over
previous tasks is computationally expensive. Also, EWC and Online EWC show high IL
time, taking over 1,213 seconds in HHAR. This is surprising as EWC is a simple method.
However, the time complexity comes from calculating and updating the Fisher matrices,
which is a computationally expensive process, after every task. SI (mostly relying on
running estimates) and LwF (replay only, calculating distillation loss) are two of the

2By reporting the results of Scenario 3 where the latency of IL methods is greater than or equal to
that of Scenarios 1 and 2, we aim to capture the upper bound of the latency.

35

Table A.5: Average Latency (Training Time/IL Time) in seconds for IL methods on
different datasets - Scenario 3 on Jetson Nano.

IL Method HHAR PAMAP2 Skoda Ninapro Ninapro EmotionSense
(Per (LOUO)
Subject)

EWC 672/1213 329/599 120/170 173/73.1 251/558 159/67.8
Online EWC 651/1188 291/570 105/162 148/60.2 225/539 131/46.3
SI 717/144 336/55.3 118/18.0 146/22.1 269/47.1 123/22.4
LwF 660/88.6 362/70.0 113/15.7 150/19.4 284/58.5 128/14.2
iCaRL (1%) 906/76.2 268/36.3 113/13.6 141/12.9 265/32.4 117/8.46
iCaRL (5%) 928/93.0 269/44.2 131/16.6 147/15.1 244/38.3 118/8.80
iCaRL (10%) 896/109 302/54.7 149/19.3 130/13.2 235/43.6 119/10.5
iCaRL (20%) 924/150 299/71.7 123/19.1 149/16.5 228/57.1 130/11.0

(

(

iCaRL (40%) - - - - - 111/11.9
GEM (1%) 607/385 262/275 86.6/53.4 117/57.3 196/170 102/70.2
GEM (5%) 1085/1012 289/377 92.3/65.7 119/61.9 219/224 105/81.6
GEM (10%) 1529/1521 379/624 94.2/70.1 122/71.6 295/380 104/76.6
GEM (20%) 2641/2660 576/1247 132/142 124/85.2 454/656 102/72.2
GEM (40%) - - - - - 106/83.5

top three fastest I methods but come at the peril of very low accuracy, making them
unsuitable for IL in mobile and embedded applications. iCaRL, the best performing IL
method, is also very fast and takes only a few seconds (e.g., 8.46-16.5 seconds) in the
Ninapro (Per Subject) and EmotionSense datasets to complete. In the HHAR dataset, the
average latency of IL time of iCaRL with the largest budget size (i.e., 20%) is relatively
small of 150 seconds compared to its training time (i.e., 924 seconds) and the IL time of
EWC (i.e., 1,213 seconds) and GEM (i.e., 2,660 seconds). In reality, most of the time is
taken by actual training (except EWC and Online-EWC), which depends on the number
of epochs to be performed and is independent of the IL method. Across scenarios, we
observe that the average training time can range from one to 15 minutes in general (except

GEM).

Having realized that iCaRL is the most promising method in terms of accuracy and
latency, we wanted to check if iCaRL can also effectively work on modern smartphone
CPUs. For this, we have implemented iCaRL on OnePlus 7 Pro for three datasets: Skoda,
Ninapro (Per Subject), and EmotionSense as they represent datasets where IL needs to
be applied to personal mobile devices (single-user case) and Scenario 3 (most practical
scenario). The smartphone has eight cores and 12 GB of RAM. To reiterate, we used
DeepLearning4j library to implement iCaRL. The smartphone app size is 134 MB. The

36

Table A.6: Average Latency (Training Time/IL Time) in seconds for iCaRL on three
datasets - Scenario 3 on Smartphone.

IL Method Skoda Ninapro EmotionSense
(Per Subject)

iCaRL (1%) 4400/9 1956/1.28 1568/0.5

iCaRL (5%) 3894/29 1974/3 1388/1.91

iCaRL (10%) 3869/72 2312/4.5 1535/2.6
iCaRL (20%) 3902/212 2008/5.1 1517/4.7
iCaRL (40%) - - 1506/8.1

results are shown in Table A.6. Similar to Jetson Nano, iCaRL takes minimal time (0.5-212
seconds) for all the tasks for every dataset. This does not only mean that IL is feasible on
modern smartphones but even if a very high number of tasks are to be learned even in the
most challenging scenario, iCaRL can do end-to-end IL in a few minutes. The training
time slows down the whole process and ranges from 20-75 minutes on the CPU of the
smartphone for different datasets. Also note that the training time taken by the tasks
after the first task (actual incremental tasks after the initial model is trained) is very
small: one to four minutes. This is a relevant result as one can train a baseline model
on a powerful machine first and can then move it to a mobile and embedded device to
learn incrementally over time. Regardless, we show that the complete incremental learning
process can still be done entirely on the smartphone CPU, especially given that the phone
can be charged overnight. This is an interesting result as this suggests that our continual
learning framework can be deployed on a smartphone CPU. It is also encouraging because
the performance can be further improved by exploiting GPU and NPU once support for
training them programmatically starts to emerge.

Memory footprint: We further examine the peak memory usage of iCaRL with its
largest budget size of 20-40% on all the datasets to evaluate whether or not it can fit
the tight memory budget of Jetson Nano. The peak memory overheads of running the
end-to-end IL range from 196 MB for our smallest dataset of EmotionSense to 1,194 MB
for our largest dataset of HHAR, when the CPU is used for IL. Then, when we use GPU
for running iCaRL, it incurs 1,782-2,127 MB peak memory and requires an additional
swap space of 750-3,523 MB. Note that we report the upper bound of the peak memory
usage to understand the memory resource requirements of IL methods. Also, the memory
overheads can be mitigated by using a smaller batch size and budget size that can fit into
resource availability of a target resource-constrained device. Furthermore, we observed
that the latency reduction using GPU over CPU is largely consistent between 80-86%,
indicating that the swap space has minimal impacts on the speed-up of the IL using GPU
compared to using CPU on Jetson Nano. This result confirms that IL in the mobile and

37

%

Lol = oB=1% == 5=20% e 10 =m 5=1% BN 5=20%
BN B=5% i 833 SN 3=5% @ B=40%
= B=10% = B 3=10% EEN Joint

0.8 0 S
09 gEs
— — 23
B [
Tos g6
]]
= =
20 20
@ P
Z 07 Z 04
02
PAMAP2 O'oNinapm (Per Subject) NinaPro (LOUO) EmotionSense
Dataset Dataset
(a) Scenario 1 (b) Scenario 1 (GR & ER)
=

Lo| =M B=1% = B=20% .2 10 mm 5=1% BN 53=20%
BN B=5% 2 BN B=5% ez B =40%
@ B=10% X B 3=10% KRN Joint

0.8 s
0.9 9
— — S
= R
208 g 06
]]
= =
20 20
@ P
207 Z 04
02

PAMAP2 O‘ONinapro (Per Subject) NinaPro (LOUO) EmotionSense
Dataset Dataset
(c) Scenario 2 (d) Scenario 2 (GR & ER)
S 1.0
Lo| R B=1% BN 5=20% s : m 5=1% = 5=20%
BN B3=5% B2 Joint BN 5=5% 2z 5 =40%
= 5=10%

08 EEm B3=10% BB Joint

0.74

0.9
— —
= =
Tos g6
= =
= =
K] 20
@ @
= 07 = 04
0.6 0.2

0.5

PAMAP2 O'oNinapm (Per Subject) NinaPro (LOUO) EmotionSense
Dataset Dataset
(e) Scenario 3 (f) Scenario 3 (GR & ER)

Figure A.5: The parameter analysis of the best performing model, iCaRL, in all tasks
(HAR, GR, and ER) for all scenarios according to its storage budgets. Reported results
are averaged over 10 trials. Standard-error intervals are depicted.

38

embedded sensing domain is applicable on resource-constrained devices within a reasonable
memory overhead.

A.5.5 Performance with IL parameters

We study the importance of the storage budget parameter for iCaRL as it is the best
performing IL method. Figure A.5 shows the weighted F1-score with changing storage
budgets of 1%, 5%, 10%, and 20% of total training samples (up to 40% storage budget for
the case of ER). In general, more samples are needed to avoid CF as the complexity of the
scenario increases. In Scenario 1, only 1% of total samples are needed to achieve similar
performance as the joint model. Moreover, in Scenario 2 and 3, the results show that the
budget size of 5% is enough to achieve the high performance which is quite close to that
of the joint model, although the difficulty of the task increases compared to Scenario 1.
In contrast, 10% of samples are required to achieve near joint model’s performance (i.e.,
upper bound performance) in the most challenging setup (Scenario 3).

Note that the performances of iCaRL with the budget size of 5% are often very close
to those of iCaRL with budget sizes of 10%, 20%, and 40%. This result indicates that
iCaRL enables us to achieve close to the performance of the joint model without requiring
excessive storage (less than 30 MB in all datasets in our experiment when a budget size
is 5%). Specifically, the required storage of iCaRL with 5% budget size for each dataset
(HHAR, PAMAP2, Skoda, Ninapro (Per Subject), Ninapro (LOUQO), and EmotionSense
corresponds to 28.84, 12.34, 4.19, 0.51, 3.19, and 0.41 MB, respectively. This is an
interesting finding, making i1CaRL a good candidate to perform IL on many embedded
devices and smartphones with reasonable storage as only a few samples are required to be
stored.

A.6 Discussion

We discuss the potential guidelines (G) for researchers and practitioners in the mobile and
embedded systems community based on our findings of this work. The readers should take
our results and guidelines with a pinch of salt as we did not compare all the existing IL
methods due to reasons mentioned earlier (Section A.3) and these findings are based on a
few prominent IL methods we analyzed in our study.

(G1): If storage is not an issue on the device, one can choose to use the iCaRL method
since it performs best across all datasets in different sensing applications. As many
modern computing platforms including smartphones and embedded devices have
large storage capacity, the issue of storing a proportion of training samples can be
minor. iCaRL is also not very computationally expensive on the modern embedded
devices and the smartphone. Also, the process can be sped up by using GPUs,

39

although it incurs higher peak memory than CPUs.

(G2): GEM, although being a replay with exemplars-based method like iCaRL, should not
be preferred over iCaRL as its performance remains inferior to those of iCaRL. Also,
GEM is computationally expensive as well as requires more storage than iCaRL.

(Gs): In a severely resource-constrained environment, EWC and Online EWC can be a
reasonable alternative to iCaRL since these methods require less additional storage.
Although EWC is a computationally expensive method, the computational cost can
be manageable as the IL process is only performed once per task. One can reduce the
number of samples used to compute fisher matrices, which account for the majority
of the IL time.

(G4): LwF and SI should be avoided as they offer minimal protection against CF on mobile
sensing applications.

(Gs5): Suppose the available resources such as storage are constrained on the device.
In that case, we suggest using iCaRL with a budget size of 1%-5% of training
samples as using a higher budget size does not always provide enough benefits if
the training dataset size is large (HHAR PAMAP2, and NinaPro (LOUO)). On the
other hand, for datasets having smaller training sizes such as Ninapro (Per Subject)
and EmotionSense datasets, having a higher budget of 20%-40% helps to a large
extent.

A.7 Conclusions and Future Work

In this paper, we studied the CF problem using six prominent IL. methods based on three
representative sensing applications (i.e., HAR, GR, and ER) in three continual learning
scenarios with varying complexities. With our end-to-end IL framework implemented
on Nvidia Jetson Nano and a smartphone (OnePlus 7 Pro), we conducted extensive
experiments to investigate IL methods’ performance, generalizability, and trade-offs of
storage, computational costs, and memory footprints. We first identified that CF occurs
in mobile and embedded sensing applications when IL methods are not used. We also
found that while most IL methods solve the CF in simple scenarios, only iCaRL among
the compared methods can successfully alleviate CF issues in more challenging scenarios
across the employed datasets. Furthermore, we demonstrated that the IL approaches incur
minor to modest storage, peak memory usage, and latency overheads (a minute per task
in general), thereby saving a considerable amount of computational resources on-device
compared to a case when training is done from scratch whenever a new class/task is
added to the system. Finally, based on those findings, we discuss potential guidelines for
practitioners and researchers interested in applying IL to edge platforms.

40

As future work, we believe that it would be worthwhile to further investigate continual
learning on more severely resource-constrained devices such as microcontrollers as they
have smaller storage, limited memory, and low computational power to apply IL methods.
Moreover, we want to study how model compression techniques such as quantization affect
IL methods’ performance. Similarly, combining binary neural networks with IL methods
can be interesting future work. The other key point our study highlighted is that the major
bottleneck comes from the training during the IL process. In this context, techniques
such as Mixed Precision Training (MPT) [70] and quantization using only 16 or 8-bit
floating-point representation [71] for weights might help improve the training efficiency in
terms of its computational costs, memory footprints and latency.

Acknowledgments

This work is supported by a Google Faculty Award 2019 and by Nokia Bell Labs through
their donation for the Centre of Mobile, Wearable Systems and Augmented Intelligence to
the University of Cambridge. The authors declare that they have no conflict of interest
with respect to the publication of this work.

41

Appendix B

FastICARL: Fast Incremental
Classifier and Representation
Learning with Efficient Budget
Allocation in Audio Sensing
Applications

42

Abstract

Various incremental learning (IL) approaches have been proposed to help deep learning
models learn new tasks/classes continuously without forgetting what was learned previ-
ously (i.e., avoid catastrophic forgetting). With the growing number of deployed audio
sensing applications that need to dynamically incorporate new tasks and changing input
distribution from users, the ability of IL on-device becomes essential for both efficiency
and user privacy.

However, prior works suffer from high computational costs and storage demands which
hinders the deployment of IL on-device. In this work, to overcome these limitations,
we develop an end-to-end and on-device IL framework, FastICARL, that incorporates
an exemplar-based IL and quantization in the context of audio-based applications. We
first employ k-nearest-neighbor to reduce the latency of IL. Then, we jointly utilize
a quantization technique to decrease the storage requirements of IL. We implement
FastICARL on two types of mobile devices and demonstrate that FastICARL remarkably
decreases the IL time up to 78-92% and the storage requirements by 2-4 times without
sacrificing its performance. FastICARL enables complete on-device IL, ensuring user
privacy as the user data does not need to leave the device.

B.1 Introduction

A recent development of deep learning has revolutionized various audio-based applications
such as emotion recognition (ER) [6], environmental sound classification (ESC) [72], and
keyword spotting [73, 74]. However, in a real-world setting where a deployed audio
classification models may need to dynamically incorporate new tasks (i.e., new classes or
inputs) from users [65] and changing input distribution [75], current supervised learning
approaches are severely limited due to the constrained nature of available resources on
the edge devices and the catastrophic forgetting (CF) issue [27]. That is, a deep learning
model becomes able to recognize a new task but forgets previously learned knowledge.

Many researchers proposed a range of Incremental Learning (IL) methods [3] to solve the CF
problem. The first group of the IL approaches is a reqularization-based method [29, 36, 37|
where regularization terms are added to the loss function to minimize changes to important
weights of a model for previous tasks to prevent forgetting. Kirkpatrick et al. [29] proposed
a regularization-based method, Elastic Weight Consolidation (EWC), which uses the Fisher
information matrix to identify important weights to the previous tasks and update less on
those weights while learning a new task. Another group of the IL approaches is exemplars-
based method [13, 31] where the method requires to store important samples from previous
tasks to prevent from forgetting learned tasks. Rebuffi et al. [13] proposed a representative
exemplar-based method, ICARL, that first utilizes herding [54] to search for exemplars
(informative samples) and then uses knowledge distillation loss on the previously learned
classes and classification losses on a new class to prevent forgetting and learn the new
class. However, prior works are limited in two ways. First, It is challenging to enable IL
on-device since IL methods are computationally heavy. Second, exemplar-based methods
require storing exemplars, which can impose a considerable burden on resource-constrained
systems.

Moreover, many techniques have been proposed to facilitate efficient machine learning
systems on resource-constrained devices. Quantization and low-bit precision of model
parameters are utilized to reduce the size of the model [9, 76]. Low-rank factorization [77,
78] and pruning [79] have been proven effective in reducing model size, while retaining
accuracy. 1L with optimizations that allow its use on-device, however, has never been
explored in the context of audio-based applications.

In this work, an end-to-end framework, FastICARL, is developed to enable efficient and
accurate on-device IL in two audio sensing applications, an ER task and an ESC task. Also,
FastICARL is a new IL method devised to improve upon the representative exemplar-based
IL method, ICARL, as we observed that ICARL consistently outperforms EWC and other
regularization-based IL methods [36, 37]. However, it has computational and storage
issues. Thus, FastICARL solves these limitations while maintaining accuracy. First, we
optimize the construction process of an exemplar set (which takes most of the IL time)

43

to shorten the IL time to tackle the first limitation. Specifically, to find the informative
exemplars that can best approximate feature vectors over all training examples, I[CARL
relies on herding which contains inefficient double for loops. Instead, FastICARL utilizes
a k-nearest-neighbor and a max heap data structure to search exemplars more efficiently.
In addition, to address the second limitation, we further optimize FastICARL by applying
quantization on exemplars to reduce the storage requirement. We convert the 32-bit float
data type into 16-bit float and 8-bit integer data types. Furthermore, we implement our
end-to-end IL framework on mobile and embedded devices of two different specifications:
Jetson Nano and a smartphone (Google Pixel 4). For a smartphone implementation, we
employ MNN [80] and our implementation enables complete on-device training of new
tasks/classes unlike TensorFlow Lite [81] or PyTorch Mobile [82] where only on-device
inference is enabled.

Overall, the major contributions and findings of this paper are as follows. We design,
implement, and evaluate FastICARL, which overcomes the limitations of the prior work.
First of all, FastICARL shows that it can effectively solve the CF issues happening in audio-
based datasets by achieving 69% and 71% weighted F1-scores for ER and ESC, respectively.
FastICARL reduces the latency of exemplar set selection up to 78% on Jetson Nano and
92% on Google Pixel 4. Moreover, FastICARL decreases the storage requirement by 2-4
times without sacrificing its performance. In addition, we demonstrate that FastICARL
can enable on-device IL without the support of the cloud. Hence, FastlICARL ensures
complete data privacy as user data does not need to leave the device. Finally, to the
best of our knowledge, FastICARL is the first end-to-end and on-device framework that
incorporates exemplar-based IL and quantization techniques in the context of audio sensing
applications.

B.2 Methodology

In this section, we formulate our problem (§B.2.1) and describe the important prior work
(§B.2.2). After that, we propose our IL method, FastICARL (§B.2.3).

B.2.1 Problem Formulation

We focus on Sequential Learning Tasks (SLTs) [32] from the audio sensing tasks, where new
classes (e.g., different sounds in ESC) can emerge over time. Thus, the learning model has
to continuously learn to accommodate new classes without CF, as would happen in real-life
scenarios. Learning tasks of this type, called SLTs, indicates that a model continuously
learns two or more tasks Dy, ..., Dy, one after another instead of learning a single task D
once (i.e., multi-task learning). Note that each task consists of disjoint groups of classes
as we adopt class-incremental learning [53]. Formally, we are given training samples,
X1 X2 .., where X¥ is a set of samples of class y. Inspired by prior works [2, 65], we

44

first train a model on the first task with N/2 classes and then incrementally train the
model by adding subsequent tasks with one class (N/2 + 1 tasks).

B.2.2 ICARL

ICARL is the representative exemplar-based IL method in the literature that attempts to
solve the CF problem of class-incremental setting. At the high level, ICARL maintains
a set of exemplar samples for each observed class (see Algorithm 2). An exemplar set is
a subset of all samples of the class to carry the most representative information of the
class. When new tasks (classes) become available, ICARL first creates a new training
set by joining all exemplar sets and the data of the new class. Then, it updates its
weight parameters by minimizing a classification loss of the new task (class) as well as
the distillation loss of the previous tasks (classes). Then, ICARL builds an exemplar
set for the new class and trims the existing exemplars for previous classes. Finally, the
classification is performed by finding the nearest-class-mean of exemplars to a given test
sample in a feature space extracted from the learned representation.

B.2.3 FastICARL

Although ICARL provides impressive performance, it is limited by high computational costs
and large storage requirements to maintain sufficient budget size to perform reasonably
well. To begin with, ICARL’s high computational loads comes from its herding operation
(find an exemplar set that has a min distance between the class mean and exemplars mean
in feature space), i.e., exemplar selection procedure which is based on the inefficient double
for loops (Lines 2-4), resulting in the O(nm?) complexity (which takes up 70 - 90% of the
total IL time). n is the number of examples in a class, and m represents the target number
of exemplars. Note that in this work, training time indicates the usual training time with
respect to back-propagation, updating weights, while the rest of the time in learning a
new task or adding a new class is considered IL time. Thus, instead of relying on herding,
FastICARL employs a k-nearest-neighbor search to identify the representative examples
to construct exemplar sets. This enables FastICARL to accelerate the process of exemplar
construction without performance degradation, as shown in Section B.3. By jointly utilizing
the max heap as in Algorithm 2, FastICARL remarkably reduces the complexity of finding
m exemplars out of n samples to O(n(1 + log(m)) + mlog(m)) = O(nlog(m)). In detail,
the computation of feature distance and the insertion of max heap cost 1 + log(m) which
is performed on n samples in total. After that, the sorting on m identified exemplars in a
max heap costs another mlog(m).

Furthermore, ICARL requires as much as 69 MB (see §B.3.4). To alleviate this storage
demand, we apply quantization on exemplar sets on the fly. Note that since budget sizes
take up 72-99% of the storage requirements of FastICARL, we apply quantization only on

45

Algorithm 2: Construction and quantization of exemplar sets for [ICARL/FastICARL

Input: Feature Extractor F(), The number of exemplars to be stored m,
Quantization bit b, IL method
Output: Quantized Exemplar set ()
Data: X = {xy,...,x,} of class y
1 U< %Z?:l }_({E,) // calculate class mean
/* find m exemplars out of n samples x/
2 if IL method is ICARL then
3 for k=1,...,m do

s e argmin i — HF@) + T F))|
5 if IL method is FastICARL then
/* calculate feature distance between each sample and class mean x/
6 fori=1,...,n do
7 di = F(x;) —
/* build max heap with size k */

create max heap H of pair {d, index}

9 for k=1,...,m do
10 H.insert(dg, k)

/* loop over the remaining samples while updating the max heap x/
11 for k=m+1,...,n do
12 if d), < H.extractMaxDist() then
13 H .pop() // delete one item from H
14 H .insert(dy, k)

/* build a sorted exemplar set P x/
15 for k=m,...,1do
16 i <— H.extractMaxDistIndex(), H.pop()
17 DL — T;

18 for k=1,...,m do
19 qr < Quantize(py, b)
20 () < ((h, --->Qm) // Quantized exemplar set

exemplars in this work. While constructing exemplar sets, FastICARL converts 32-bit float
data to 16-bit float or 8-bit integer types and store them with a smaller budget. When
converting between 32-bit float and 8-bit integer, we use quantization scheme used in [9]
to minimize the information loss in quantization. The scheme utilizes an affine mapping
of integers q to real numbers r, i.e.,

r==5(q—2) (B.1)

46

for some constant quantization parameters S and Z. S denotes the scale of an arbitrary
positive real number, and Z denotes zero-point of the same type as quantized values q
and corresponds to the real value 0.

B.3 Evaluation

B.3.1 Datasets

We experiment with our method on two audio applications.

EmotionSense: For emotion recognition (ER) application, we employ the EmotionSense
dataset [6] as it is used in multiple studies in audio sensing [66, 24, 45]. It contains audio
signals which are clustered into five standard broader emotion groups, generally used by
social psychologists [83] such as (1) Happy, (2) Sad, (3) Fear, (4) Anger, and (5) Neutral.
This dataset has 2,235 samples, and each measurement corresponds to a particular emotion
based on a 5-second context window. Following [51], we extract 24 log filter banks [67]
from each audio frame over a time window of 30 ms with 10 ms stride. After that, as our
preprocessing steps, we downsample each sample measurement by averaging corresponding
24 filter banks of every 250 ms (or 25 consecutive windows) without any overlap to reduce
the length of the input sequence for a learned neural network. We normalize each window
to zero mean and unit variance. As a result, we created an input of size 20 x 24.

UrbanSound8K: For environment sound classification (ESC) application, we adopt the
UrbanSound8K dataset [72] as it is a large dataset that can test the effectiveness of our
method on resource-limited devices. UrbanSound8K contains 9.7 hour-long data with 8,732
labeled urban sounds collected in real-world settings. This dataset consists of 10 audio
event classes such as car horn, drilling, street music, etc. Following [84], we extracted four
different audio features ((1) Log-mel spectrogram, (2) chroma, (3) tonnets, (4) spectral
contrast) for each sound clip, sampled at 22 kHz. Using the first 3-seconds of sound, we
created an input of size 128 x 85, where 128 represents the number of frames and 85
represents aggregated feature size of the four audio features.

B.3.2 Experimental Setup

Task: As described in §B.2.1, we adopt class-incremental learning. Hence, for Emotion-
Sense, two classes are selected as task 1 for training a base model, and then the other
three classes are added to the model one by one sequentially. For UrbanSound8K, five
classes are used as the first task, and the other five classes are learned incrementally. Note
that all reported results in §B.3.4 are averaged over five times of experiments.

Model Architecture: We adopt a convolutional neural networks (CNN) architecture
from prior work [84] to construct the ER and ESC models. To identify a high-performing

47

Table B.1: Average weighted F1-score of baselines and FastICARL according to the budget
size (B = 5%, 10%,20%) in EmotionSense and UrbanSound8K datasets.

‘ EmotionSense (ER) UrbanSound8K (ESC)
| 5% 10% 20% | 5% 10% 20%

ICARL (32 bits) 0.57 0.60 0.70 0.67 0.69 0.69
ICARL (16 bits) 0.55 0.63 0.70 0.66 0.67 0.71
ICARL (8 bits) 0.59 0.62 0.68 0.65 0.68 0.70
FastICARL (32 bits) | 0.57 0.62 0.67 0.67 0.69 0.70

FastICARL (16 bits) | 0.58 0.65 0.68 0.66 0.69 0.71
FastICARL (8 bits) | 0.60 0.63 0.69 0.65 0.68 0.69

Joint (Upper Bound) 0.83 0.89
None (Lower Bound) 0.41 0.02

and yet lightweight CNN model to operate on embedded and mobile devices, we conducted
hyper-parameter search with different number of convolutional layers {2,3,4}, number
of convolutional filters {8,16,32}, pooling layer type {max pooling, average pooling},
number of fully-connected (FC) layers {0,1} and its hidden units {128,512,1024}. A basic
convolutional layer consists of 3 x 3 convolution, batch normalization, and Rectified Linear
Unit (ReLLU). We found that although the best performing model is a 4-layered CNN
with 32 Conv filters followed by an FC layer (Weighted F1-score of 86% for ER and 90%
for ESC), the performance degradation without the FC layer is minimal (see Table B.1)
while the majority of the model parameters are consumed in the FC layer as shown in [84].
Hence, as our final CNN architecture, we use [Conv: {32,32,64,64}] for ER and [Conv:
{16,16,32,32}] for ESC. We omit an FC layer in both applications, and average pooling
layers and a 0.5 dropout probability are adopted for the second and fourth Conv layers.
ADAM optimizer [85] and learning rate of 0.001 are used.

Evaluation Protocol: Following prior works [6, 84], the 10% of each class is used as the
test set and the remaining as the training data. In addition, we report the performance
of a model trained up to task k incrementally. Also, we report the results based on a
weighted F1-score which is more resilient to class imbalances as the employed datasets are
not balanced.

Baselines: To evaluate the effectiveness of FastICARL, we include various baselines in
our experiments. First, we include a Joint model which represents a scenario when the
model is trained with training data of all classes available from the beginning. Joint
serves as a performance upper bound. Second, a None model represents a case where a
model is fine-tuned incrementally by adding classes to the model without any IL method.
None can be regarded as a performance lower bound. Thirdly, we include ICARL with
three quantization levels (32, 16, and 8 bits). Finally, FastICARL (32, 16, and 8 bits) is
compared.

48

Table B.2: Average Latency (IL Time) in seconds for ICARL and FastICARL on Jetson
Nano and a smartphone (Google Pixel 4) for both datasets according to the budget size
(B = 5%,10%,20%).

| Embedded Device (Jetson Nano) Smartphone (Google Pixel 4)
| EmotionSense (ER) UrbanSound8K (ESC) EmotionSense (ER) UrbanSound8K (ESC)
| 5% 10% 20% | 5% 10% 20% || 5% 10% 20% | 5% 10% 20%
ICARL (32 bits) 6.25 7.24 9.35 102 144 271 141 1.98 2.73 415 755 138
ICARL (16 bits) 6.30 7.40 9.25 100 144 270 1.48 1.99 2.74 44.6 788 139
ICARL (8 bits) 6.27 740 9.25 120 178 292 1.43 1.99 3.04 454 117 146
FastICARL (32 bits) | 5.10 5.18 5.18 60.6 60.8 60.7 0.88 0.90 0.83 10.5 10.8 10.4
FastICARL (16 bits) | 4.96 4.98 5.22 61.1 61.5 60.6 0.87 0.89 0.84 10.7 11.2 10.9
FastICARL (8 bits) | 5.01 5.07 5.24 67.1 66.3 61.5 0.90 091 0.87 10.7 10.7 10.6

B.3.3 Implementation

To evaluate our framework on resource-constrained devices, we implemented it on an
embedded (Jetson Nano) and a mobile device (Google Pixel 4). The Jetson Nano is an
embedded mobile platform with four cores and 4 GB RAM. It is often utilized in mobile
robotics. We use PyTorch 1.6 to develop and evaluate FastICARL on Jetson Nano. The
Google Pixel 4 phone has eight cores and 6 GB RAM. We develop FastICARL based on
C++ on the Android smartphone using mobile deep learning framework, MNN, and the
Android Native Development Kit. Note that our implementation of FastICARL on the
smartphone enables complete on-device training of new tasks/classes incrementally, unlike
other deep learning frameworks on mobile platforms (e.g., PyTorch Mobile) where only on-
device inference is supported. The binary size of our implementation on a mobile platform
is only 3.8 MB which drastically reduces the burden of integrating the IL functionality
into mobile applications given that ICARL requires as much as 69 MB for UrbanSound8K.

B.3.4 Results

Performance: We first show the average weighted F1-score across all runs for different
baselines and IL methods for the EmotionSense and UrbanSound8K datasets in Table B.1.
For both datasets, we present the performance according to the size of the budgets storing
exemplars (5%, 10%, and 20%) to analyze trade-offs between the performance and storage
requirement of the studied IL methods. Note that the weighted F1-score of the models
after all tasks are trained incrementally is reported.

To begin with, the None model allows us to confirm that CF occurs without the IL method.
Its weighted F1-score drops sharply to 41% for ER and 2% for ESC. In contrast, the Joint
model achieves as high as 83% and 89% weighted F1-scores for ER and ESC, respectively.
ICARL (32 bits) and our proposed IL method, FastICARL (32 bits), can largely mitigate
the CF issues observed in the None model. With a budget size of 20%, ICARL provides a

49

high weighted Fl-score of 70% for ER and 69% for ESC. Likewise, FastICARL achieves a
similar performance (67% for ER and 70% for ESC) to that of ICARL, which stays close
to the upper bound performance of the Joint model. Furthermore, we find that the impact
of the information loss due to the quantization of the saved exemplars for both ICARL
and FastICARL is minimal. As shown in Table B.1, all four variants, such as ICARL (16
and 8 bits) and FastICARL (16 and 8 bits), achieve similar performance to their original
counterparts.

Finally, we study the importance of the storage budget parameter. We present the
performance of our IL method according to its budgets of 5%, 10%, and 20% of total
training samples. In general, the more samples are used as exemplars, the higher the
weighted Fl-score the IL method can achieve. We also find that our method (FastICARL)
needs only 5% budget size to achieves a weighted Fl-score of 60-64% and successfully
retain its weighted F1-score even after losing some information by applying quantization
up to 8 bits on its exemplars.

Latency: We measure the computational costs of sequentially learning additional classes
based on a pre-trained model. The average IL time to run different IL methods is presented
in Table B.2. The IL time of FastICARL (32, 16, and 8 bits) ranges 4.96-67.1 seconds
on Jetson Nano and 0.83-11.2 seconds on Google Pixel 4 depending on the budget and
datasets. FastICARL remarkably reduces the IL time by 18-78% on Jetson Nano and
37-92% on Google Pixel 4 compared to ICARL. Note that the training time of ICARL
and FastICARL is approximately the same (these results are omitted for brevity). Also,
FastICARL (16 and 8 bits) shows substantial improvement in IL time: this indicates that
the additional operation of quantizing exemplars does not impose a meaningful burden on
the system.

Storage: We now show the storage overhead of the IL method. The size of FastICARL is
composed of the model parameter size (M) and budget size (B). As FastICARL relies on
stored exemplars, its storage demand is primarily driven by the number of exemplars to
be stored, i.e., budget size (B). As shown in Figure B.1, FastICARL requires at most 0.49
MB for the EmotionSense dataset and 18 MB for the UrbanSound8K dataset, decreasing
the storage requirement 2 to 4 folds over ICARL. Model sizes for EmotionSense and
UrbanSound8K datasets are fixed as 0.3 MB and 1 MB, respectively.

Based on the results in this section, we have demonstrated that FastICARL enables faster
IL by reducing the IL time and storage requirements by applying quantization.

B.4 Conclusions

In this paper, we developed an end-to-end and on-device IL framework, FastICARL,
that enables efficient and accurate IL in mobile sensing applications. We implemented

20

®©
=1

o

[0 Model Size (M) I Budget Size (3) [Model Size (M) I Budget Size (B)

-
=

=)
=N
=)

E 2x
tsmaller

o

%
v
=}

E 4x
tsmaller

<
>

'
.
v

N

~
w
S

Storage Requirement (MB)
S

Storage Requirement (MB)
=
(=

<

o
—_
(=3

00 CARL/FastiCARL ICARL/FastICARL _ ICARL/FastICARL YCARL/FastICARL ICARL/FastICARL _ ICARL/FastICARL
(32 bits) (16 bits) (8 bits) (32 bits) (16 bits) (8 bits)
(a) EmotionSense (b) UrbanSound8K

Figure B.1: Comparison of the storage requirement (M + B) for ICARL and FastICARL
(32, 16, and 8 bits) based on 20% budget size in each dataset.

FastICARL on two resource-constrained devices (Jetson Nano and Google Pixel 4) and
demonstrated its effectiveness and efficiency. FastICARL decreases the IL time up to
78-92% by optimizing the exemplar construction procedure and also reduces the storage
requirements by 2-4 times by quantizing its exemplars without sacrificing the performance.

There are many interesting directions that deserve further research. First of all, we want
to extend our work to enable a higher degree of quantization (such as using 2 or 3 bits)
and apply pruning on a model to reduce the model parameters and speed up the training
process, which is another bottleneck of the IL. Furthermore, it is worth investigating
IL methods on more severely resource-constrained devices such as micro-controller units
having meager system resources.

Acknowledgments

This work is supported by ERC through Project 833296 (EAR) and by a Google Faculty
Award. We thank Pete Warden for his valuable comments and suggestions.

51

Appendix C

YONO: Modeling Multiple

Heterogeneous Neural Networks on
Microcontrollers

52

Abstract

Internet of Things (IoT) systems provide large amounts of data on all aspects of human
behavior. Machine learning techniques, especially deep neural networks (DNN), have
shown promise in making sense of this data at a large scale. Also, the research community
has worked to reduce the computational and resource demands of DNN to compute on
low-resourced microcontrollers (MCUs). However, most of the current work in embedded
deep learning focuses on solving a single task efficiently, while the multi-tasking nature
and applications of IoT devices demand systems that can handle a diverse range of tasks
(such as activity, gesture, voice, and context recognition) with input from a variety of
sensors, simultaneously.

In this paper, we propose YONO, a product quantization (PQ) based approach that
compresses multiple heterogeneous models and enables in-memory model execution and
model switching for dissimilar multi-task learning on MCUs. We first adopt PQ to learn
codebooks that store weights of different models. Also, we propose a novel network
optimization and heuristics to maximize the compression rate and minimize the accuracy
loss. Then, we develop an online component of YONO for efficient model execution and
switching between multiple tasks on an MCU at run time without relying on an external
storage device.

YONO shows remarkable performance as it can compress multiple heterogeneous models
with negligible or no loss of accuracy up to 12.37x. Furthermore, YONO’s online component
enables an efficient execution (latency of 16-159 ms and energy consumption of 3.8-37.9 mJ
per operation) and reduces model loading/switching latency and energy consumption by
93.3-94.5% and 93.9-95.0%, respectively, compared to external storage access. Interestingly,
YONO can compress various architectures trained with datasets that were not shown
during YONQO'’s offline codebook learning phase showing the generalizability of our method.
To summarize, YONO shows great potential and opens further doors to enable multi-task
learning systems on extremely resource-constrained devices.

C.1 Introduction

With the rise of mobile, wearable devices, and the Internet of Things (IoT), the proliferation
of sensory type data has fostered the adoption of deep neural networks (DNN) in the
modeling of a variety of mobile sensing applications [1]; researchers use DNN trained on
sensory data in mobile sensing tasks such as human activity recognition [23, 86|, gesture
recognition [25], tracking and localization [26], mental health and wellbeing [24], and
audio sensing applications [34]. While machine learning (ML) models are becoming more
efficient on resource-constrained IoT devices [87], most existing on-device systems, designed
for microcontroller units (MCUs), are targeted at one specific application [88; 89, 90].
Conversely, multi-application systems capable of directly supporting a wide range of
applications on-device could be more versatile and useful in practice. Specifically, we
envisage a system powered by MCUs that can recognize users’ voice commands, activities
and gestures, identify everyday objects and people, and understand the surrounding
environments: this has the potential to boost the utilization of IoT devices in practice
(e.g., help visually impaired individuals understand their environments [91]).

However, realizing such multi-tasking system faces three major challenges. First, multiple
dissimilar tasks based on different modalities of incoming data (e.g., voice recognition
(audio), activity recognition (accelerometer signals), object classification (image)) need
to co-exist in the same framework. As discussed in [92], conventional multi-task learning
(MTL) approaches cannot address multiple heterogeneous networks effectively. Second,
IoT devices based on MCUs are extremely resource-constrained [93, 94]. For example,
“high-end“ MCUs (e.g., STMF767ZI) have only 512 KB Static Random-Access Memory
(SRAM) for intermediate data and 2 MB on-chip embedded flash (eFlash) memory for
program storage. Finally, in real-world deployment scenarios, context switching of
different ML tasks at run-time could incur overheads on memory-constrained MTL systems
as demonstrated in [92], where some models must reside in external storage devices due to
the limited on-chip memory space. As on-chip memory operations are faster than external
disk accesses, frequent model loading/swap between different tasks based on external
storage increase the overall latency, exacerbating the usability and responsiveness of the
system.

To solve these challenges, one of the common techniques employed is to compress individual
models separately using pruning [79, 95| and quantization [9]. However, model compression
techniques are limited since extensive and iterative finetuning is required to ensure high
performance after compressing a model. Also, since models are trained independently, they
cannot benefit from potential knowledge transfer between different tasks. In the literature,
researchers proposed MTL-based approaches to achieve robustness and generalization of
multiple tasks, while increasing the compression rate of the model by sharing network
structures. However, sharing/compressing multiple heterogeneous networks has not been
fully examined. Furthermore, prior work [92] attempts to solve the MTL of multiple

o4

heterogeneous networks by sharing weights of multiple models via virtualization. However,
this method is complex, and the compression ratio is constrained to 8.08x (see §C.4.2 for
detail), thereby limiting the type of IoT devices on which it can operate. Further, since
only a simplified LeNet architecture is evaluated on an MCU, the system could not achieve
high accuracy to be useful in practice (e.g., 59.26% on the CIFAR-10 dataset [96]).

This Work. To address the challenges and limitations of previous approaches, we propose
YONO (You Only Need One pair of codebooks), that adopts Product Quantization
(PQ) [11] to maximize compression rate and on-chip memory operations to minimize
external disk accesses for heterogeneous multi-task learning. PQ, originally proposed in
the database community, aims to decompose the original high-dimensional space into the
Cartesian product of a finite number of low-dimensional subspaces that are independently
quantized. A model’s weight matrix of any layer can be converted to codeword indexes
corresponding to the subvectors of the weight matrix via a codebook.

Inspired by successful applications of PQ on approximate nearest neighbor search out of
billions of vectors in the database community [11, 97, 98] and single layer compression in an
individual model [99, 100, 101, 102, 103], we jointly apply PQ on multiple models instead
of on a layer of a model. We find just one pair of codebooks that are generalizable and thus
can be shared across many dissimilar tasks. We then propose a novel optimization process
based on alternating PQ and finetuning steps to mirror the performance of the original
models. Further, we introduce heuristics to consider the weight differences between the
layers of the original model and the reconstructed layers from the codebooks to maximize
the compression rate and accuracy. Finally, we develop an efficient model execution and
switching framework to operate multiple heterogeneous models targeted for different tasks,
reducing the overhead of context switching (i.e., model swap between tasks) at run-time.

YONO is comprised of two components. The first component is an offline phase in which a
shared PQ codebook is learned and multiple models are incorporated. We implement the
offline phase of our system on a server. The second component is an online phase in which
multiple heterogeneous models are deployed on an extremely resource-constrained device
(MCUs). To evaluate YONO, we first evaluated four image datasets and one audio dataset
used in state-of-the-art prior work on heterogeneous MTL [92] for a fair comparison. We
show that YONO achieves high accuracy of 93.7% on average across the five datasets, which
is a 15.4% improvement over [92] due to our usage of the optimized network architecture
(see §C.4.2 for detail) and is very close to the accuracy of the uncompressed models (0.4%
loss in accuracy). Further, to evaluate the scalability of YONO to other modalities, we
include data from modalities such as accelerometer signals from Inertial Movement Units
(IMU) for human activity recognition (HAR) and surface electromyography (sEMG) signals
for gesture recognition (GR). We then demonstrate that YONO effectively retains the
accuracy of the uncompressed models across all the employed datasets of four different
modalities (Image, Audio, IMU, sEMG). Next, to evaluate the generalizability of the

95

learned codebooks of YONO, we apply YONO to compress new models trained on unseen
datasets during the codebook learning in the offline phase. Surprisingly, YONO can
maintain the accuracy of the uncompressed models and achieve a 12.37x compression
ratio (53.1% higher than [92]). Finally, we evaluate the online component of YONO on
the largest model and the smallest model to show the upper bound and lower bound
results, respectively. We employ an MCU, STM32H747XI (see Section C.3 for details), and
demonstrate that YONO enables an efficient in-memory execution (latency of 16-159 ms
and energy consumption of 3.8-37.9 mJ per operation) and model loading/swap framework
for task switching (showing reductions of 93.3-94.5% in latency and 93.9-95.0% in energy
consumption compared to the method using external storage access).

C.2 YONO

In this section, we first present the overview of our multitasking system, YONO (§C.2.1).
Then, we introduce the background on PQ and its applications on single model compression
(§C.2.2). We then explain how we utilize PQ to compress multiple heterogeneous networks
into a pair of codebooks. The networks can be of any arbitrary architecture that consists
of fully connected layers and convolutional layers. After that, we present our novel network
optimization process to ensure the performance of the compressed networks remain close to
original models (§C.2.4). On top of that, based on an observation (detailed in §C.2.5), we
further propose optimization heuristics to maximize the performance gain with a minimal
loss of the compression rate when using PQ-based compression. Finally, we describe our
in-memory execution and model swapping framework on MCUs (§C.2.6).

C.2.1 Overview

In this subsection, we describe the overview of YONO that learns codebooks to represent
the weights of multiple heterogeneous neural networks as well as enable on-chip memory
operations on resource-constrained devices. In particular, YONO is composed of two com-
ponents: (1) an offline phase where YONO learns a pair of codebooks on pretrained neural
networks using PQ (will be explained in detail in §C.2.2) and (2) an online phase where
YONO enables on-chip execution such as model execution and model loading/swapping.
Note that we assume that the overall size of multiple neural networks is larger than the
operational limit of the on-chip eFlash memory and SRAM of the targeted IoT devices.
For example, in Section C.4, we employ seven different models with a total size of 3.84
MB and evaluate our framework on MCU (STM32H747XI), which strictly has only 512
KB of SRAM and 1 MB of eFlash.

26

T1 (CNN) T2 (FC) Tn(CNN) YONO

YONO Module for

=P | Learning Codebooks and | == |:| |:| |:

Indices
B1 B2 Bn
W1 W2
Pair of concatenated weight Codebook: C1, C2
matrices from multiple models Index: B1, B2, ..., Bn

Figure C.1: Overview of the offline component of YONO. The offline module employs
PQ to learn a pair of codebooks and identify indices to represent multiple heterogeneous
neural networks. This module incorporates our novel optimization process and heuristics
to minimize the accuracy loss compared to the original models.

C.2.2 Product Quantization and Compressing Single Neural
Network

We now provide an introduction to PQ and how it is used to compress a single model. PQ
can be considered a special case of vector quantization (VQ) [104], in which it attempts to
find the nearest codeword, c, to encode a given vector, w. Suppose we are given a codebook,
C, that contains a set of representative codewords, we can reconstruct/approximate the
given vector w by using c and its associated index in the codebook. Thus, given a vector
w € R to be encoded, the encoding problem of VQ can be formulated as follows.

argmin |w — Cb|? (C.1)
b

where C is a d-by-K matrix containing K codewords of length d, and b is called a code
(i.e., index of codebook pointing to a codeword, ¢, nearest to the given vector, w). ||| is a
lo norm. Solving Equation C.1 is equivalent to searching the nearest codeword. Besides,
the codebook, C, is learned by running the standard k-means clustering over all the given
vectors [11].

The PQ is a particular case of VQQ when the learned codebook is the Cartesian product of
sub-codebooks. Given that there are two sub-codebooks, the encoding problem of PQ is

as follows.
argmin ||w — Cb||*,
b (C.2)
st. C= Cl X CQ

o7

where C; and C, are two sub-codebooks of Cil—loy—K matrices. Since any codeword of C
is now the concatenation of a codeword of C; and a codeword of Cy, PQ can have K2
different combinations of codewords. If a vector is divided into M partitions, then PQ
can have K™ combinations of codewords. The number of sub-codebooks, M, can be any
number between 1 and the length of the given vector, d (e.g., 1, 2, ..., d). When M is set
to 1, it is VQ. When M is set to d, it is equivalent to the scalar k-means algorithm.

We now describe how the encoding problem of PQ can be applied to compress a neural
network. It is because instead of storing weight matrix W of any layer in neural networks
explicitly, we can learn an encoding B(W) that needs much less storage space. Using the
found encoding B and a learned codebook C based on PQ, we can reconstruct W which
approximates the original weight matrix W of the layer. If we can find W close enough to
W, the reconstructed layer of a neural network will perform normally as demonstrated in
prior works using PQ to compress a single neural network [99, 102].

C.2.3 Compressing Multiple Heterogeneous Networks

As described in §C.2.2, PQ is typically used to compress a single model in machine
learning literature [101, 103]. In prior works, each layer is replaced by one small-sized
codebook (e.g., K=256, D=8, M=1), and a high compression rate and little performance
loss are achieved in large computer vision models with more than 10 M parameters (e.g.,
ResNet50 [105]). However, in small-sized models that are specially designed to be used on
MCUs (i.e., the number of parameters is at most around 500K-1M), the same approach
(having a codebook for each layer) no longer provides a high compression rate due to the
overhead of storing many codebooks. Therefore, in our system, we propose to apply PQ
to one or multiple neural networks while only sharing a pair of the learned codebooks to
maximize the compression ratio. We will explain how we ensure high performance of the
compressed models in the next subsections (§C.2.4 and §C.2.5).

As in Figure C.1, we first concatenate weights of all the models of different tasks (i.e.,
Ty, Ts,...,T,). Then, we construct two weight matrices, W; and W5, so that YONO takes
into account spatial information of convolutional layer kernels as in other prior works [102].
For one weight matrix, W7, we combine convolutional layers with a kernel size of 3 x 3.
Then, in the other weight matrix, W5, we concatenate convolutional layers with kernel size
1 x 1 and fully-connected layers. Then these concatenated weight matrices, Wy and W5,
are given as an input to learn codebooks, C' and Cj, for different kernel sizes, respectively.
Note that we also observed that neglecting such information in learning codebooks leads to
worse performance. In our system design, we select kernel sizes of 3 x 3 and 1 x 1 as those
are widely used kernel sizes in many of the optimized network architectures [106, 107, 108].
Also, since FC layers are essentially the same as point-wise convolution operation (i.e.,
kernel size of 1 x 1), we combine weights of FC layers together with those of 1 x 1 kernel

o8

convolution layers. Besides, we set M to 2 throughout our evaluation so that YONO can
leverage the implicit codebook size of K. We observed that when M is 1, the codebook
is not generalizable enough to compress multiple neural networks. When M is set to 3,
the overhead of the codebooks decreases the compression rate without providing much
accuracy benefit.

C.2.4 Network Optimization

After learning a pair of codebooks for multiple models as in §C.2.3, YONO performs
finetuning on the reconstructed model in order to adjust the loss of information due to
the compression (see Algorithm 3). As studied in [95], weights in the first and last layer of
a model are the most important. Thus, in the finetuning stage, we select the first and
last layer of a model and finetune them (Lines 2-4). The finetuning step largely recovers
the accuracy of the original model by re-adjusting the first and last layer of the model
according to the different weights induced by the codebooks. However, as we will show
in our evaluation in Section C.4 (this incurs 2-8% accuracy loss), a simple extension of
PQ to multiple heterogeneous neural networks with a finetuning step cannot ensure high
accuracy due to the increased weight differences between original models’ weight matrices
W, 7, and reconstructed models’ weight matrices W, 7, although it shows a high
compression rate.

Therefore, we introduce an optimization process to improve the performance of the
decompressed models. As discussed in prior works [99, 101], in general, higher weight
differences (i.e., errors) result in increased loss of accuracy. Thus, to minimize the impact
of the weight differences, we adopt to use the iterative optimization procedure, inspired by
the Expectation-Maximization (EM) algorithm [109] and prior work [101]. We iteratively
adjust the weight drifts by reassigning indices on the updated weights from finetuning as
the E-step (Lines 12-13) and by finetuning several selected layers (e.g., first and last layers)
as the M-step (Lines 14-17). Note that our optimization procedure is novel in that (i) we
perform network optimization across multiple heterogeneous networks and (ii) we do not
update codewords in our learned codebooks since we want our codebooks to be generalizable
to compress unseen models and datasets during the codebook learning procedure, different
from single model compression methods [99, 101, 102, 103]. In Section C.4, we demonstrate
the generalizability of our learned codebooks and our system on new models that are
trained on new datasets that YONO did not see in its codebook learning.

C.2.5 Optimization Heuristics

In addition, we further propose an optimization heuristic that can maximize performance
improvement while ensuring a high compression rate. We observed that weight differences
of each layer (W and W) are not uniformly distributed. Besides, the number of parameters

29

Algorithm 3: YONO Network optimization and heuristics for a given task ¢

Input: Model weights W, model indices b, PQ codebooks C, the number of layers L,
error threshold e, heuristics

Output: Reconstructed model weights \/7\\7, model indices b
Data: Train data DTN Test data DTEST

/* Perform an initial finetuning step */
ii? — (3(b) // reconstruct a model via codebooks and indices
for {=2,...L —1do

‘ FreezeWeights(wz)

// run network training (e.g., BackProp) with loss function
Finetune(W, DTRAIN)

5 acc_orig < Evaluate(W, DTEST))

10
11

12

13

14
15

16

17
18

19
20

21
22

23

24

acc_recon — Evaluate(\/ﬂ\/', DTESTY)
if acc_orig — € < acc_recon then
‘ return \/7\\7, b
/* Perform a further network optimization step */
S <« (1,L) // finetuning layer set
b+ b
fori=1,...L—2do

// E-step: code re-assignment

for (¢ S do
b! argmin H\?V’Z — CbH2
beb?
// M-step: model update
W « C(b)
for ¢ ¢ S do
‘ FreezeWeights(W?)

Finetune(W, DTRAIN)
acc_orig <+ Evaluate(W, DTEST))

acc_recon + Evaluate(W, DTFST))
if acc_orig — € < acc_recon then

‘ return V/\\/',f)
if heuristics is OURS then

// choose a layer to finetune based on our heuristics

—~ 112
W@ o Wﬁ /NE

¢ < argmax ‘
¢

S« (S,0)

60

in each layer is considerably different. For example, MicroNet-KWS-M [88] (we adopt
this network architecture in our evaluation. Refer to Section C.4 for detail) contains 12
convolutional and FC layers. Among them, one convolutional layer has a 4-dimensional
weight matrix (W € RCoutxCinxkxk) with a size of {140, 1, 3, 3} which has 1,260 parameters,
whereas another convolutional layer in the same model can have weight matrix with a size
of {196, 112, 1, 1} which has 21,952 parameters. The latter has 17.4 times more parameters
than the former. Thus, based on this observation, we propose our novel optimization
heuristic to select layers for finetuning that have the largest weight difference and contain
the least number of parameters (refer to Lines 22-24 in Algorithm 3). Hence, given a
network W with L layers, we attempt to find a layer ¢ as follows.

argrlpaxHWZ—V/\\/'eHg/Ng (C.3)

where W! — W¥ is a weight difference of weight matrices of the layer ¢, and N is the
number of the parameters of the layer /.

In summary, through the optimization heuristics, YONO identifies a layer with the highest
weight difference per parameter. After that, YONO finetunes the identified layer using
our network optimization process introduced in §C.2.4. The process continues until the
reconstructed model’s accuracy is recovered to the target accuracy (Lines 20-21), i.e.,
accuracy loss is less than a given threshold € (e.g., 2-3% in our evaluation). The number of
layers to be finetuned is less than or equal to three in most cases. This process helps YONO
maximize the compression ratio (small storage overhead) while retaining the accuracy of
its compressed models close to their corresponding original (uncompressed) models. Note
that the finetuned layers are then quantized into 8-bit integers in the online component of
YONO as described in the next subsection.

C.2.6 In-memory Execution and Model Swap Framework on
MCUs

Having established the offline component of YONO, we now turn our attention to the
online component of our system. At runtime, the online component of YONO enables the
fast and efficient in-memory execution and model swap of multiple heterogeneous neural
networks. Figure C.2 illustrates the overview of the online component of YONO.

Data Structure for Deployment on MCUs: To begin with, we describe the data
structures that are necessary for deploying ML models on MCUs. First, YONO requires one
pair of learned PQ codebooks, model indices, and other relevant information to reconstruct
a model. In addition, YONO needs a task executor to run the reconstructed model
in-memory and a task switcher to swap an in-memory model to another reconstructed
model.

61

YONO Module for On-Chip
Swap & Execution

Figure C.2: Overview of the online component of YONO. The online module enables fast
and efficient model loading/swap and in-memory execution.

Learned Codebooks: As described in subsections §C.2.2-C.2.5, YONO learns a pair
of codebooks by applying PQ on multiple heterogeneous neural networks with our novel
optimization procedure. Since SRAM is a scarce resource on MCUs, the codebooks
are stored on eFlash. Also, because the codebooks are shared across different models
compressed by YONO and static during runtime, they are stored on the read-only memory
of eFlash.

Model Indices and Other Elements: Once a model is compressed through our system,
YONO generates model indices that correspond to the weights of an original model via the
learned codebooks and other relevant elements necessary to reconstruct the uncompressed
model. For example, relevant elements include model architecture, operators, quantization
information, and so on.

Task Executor: We now present the explanation of our task executor. As we adopt
TensorFlow Lite for Microcontrollers (TFLM) [87] to run the deployed model on MCUs,
YONO also follows its model representation and interpreter-based task execution. As
model representation on MCUs, the stored schema of data and values represent the model.
The schema is designed for storage efficiency and fast access on mobile and embedded

62

platforms. Therefore, it has some features that help ease the development of MCUs. For
example, operations are in a topologically sorted list instead of a directed-acyclic graph,
making conducting calculations be a simple looping through the operation list in order.
In addition, YONO adopts interpreter-based task execution by relying on TFLM. Thus,
the interpreter refers to the schema of the model representation and loads a model. After
that, the interpreter handles operations to execute. Since YONO adopts an interpreter-
based task executor and loads a model in the main memory for execution, YONO allows
model switching at run time, which is not allowed with the code-generator-based compiler
method [110] because this method requires recompilation to switch a model.

Task Switcher: When a task needs to be switched (e.g., the target application is switched
from image classification to voice command recognition), YONO replaces the loaded model
in the memory with a new model to be executed. Using the same memory space between
previous and new models, YONO can operate multiple models within a limited memory
budget of SRAM. In addition, since YONO does on-chip memory operations to perform
execution and model swap, YONO improves the response time and end-to-end execution
time of different applications. It is because the access time to secondary storage devices is
slower than that to internal memory and primary storage. Moreover, a system relying on
external storage devices may have unpredictable overheads. For example, disk-writes on
storage devices like flash and solid-state drives need to erase an entire block before a write
operation.

Model Reconstruction: We now describe our model reconstruction scheme. To recon-
struct a model, YONO utilizes the PQ codebooks, indices, and relevant elements, such as
batch normalization layer’s mean and variance, quantization information, stored in eFlash.
The overall process is as follows. First, YONO retrieves model weights by matching indices
of a model to be loaded on the main memory and its corresponding codewords of the PQ
codebooks. Secondly, YONO loads relevant elements of the model and then writes this
information and model weights to the preallocated memory address for the model on the
main memory.

In addition, each value of the learned codewords in the PQ codebooks is stored in 16-bit
float instead of 32-bit float type to further reduce the storage requirements on eFlash. In
contrast, the weights of the model loaded on the main memory and executed need to be
quantized to 8-bit integers. Thus, while loading each layer of the model, YONO converts
16-bit floats to 8-bit integers using the saved quantization information. Specifically, we use
the quantization scheme used in [9] to minimize the information loss in quantization. We
utilize an affine mapping of integer q to real number r for constant quantization parameters
Sand Z, ie., r=S(¢g— Z). S denotes the scale of an arbitrary positive real number. Z
denotes zero-point of the same type as quantized value q, corresponding to the real value
0. As a result, the reconstructed model in the online component is based on 8-bit integers,
and thus the use of codebooks does not affect computations of model execution.

63

C.3 System Implementation

We introduce the hardware and software implementation of YONO.

Hardware. The offline component of our system is implemented and tested on a Linux
server equipped with an Intel Xeon Gold 5218 CPU and NVIDIA Quadro RTX 8000 GPU.
This component is used to learn PQ codebooks and find indices for each model to be
compressed. Then, the online component of our system is implemented and evaluated on
an MCU, STM32H747XI, having two cores (ARM Cortex M4 and M7) with 1 MB SRAM
and 2 MB eFlash in total. However, our implementation of YONO uses only one core
(ARM Cortex M7) since MCUs are typically equipped with one CPU core. We restrict the
usage space of SRAM and eFlash to 512 KB and 1 MB, respectively, to enforce stricter
resource constraints.

Software. We use PyTorch 1.6 (deep learning framework) and Faiss (PQ framework) to
develop and evaluate the offline component of YONO on the Linux server. At the offline
phase, we develop YONO using Python on the server and examine the accuracy of the
models. In addition, we develop the online component of YONO using C++ on STM32H7
series MCUs. For running neural networks on MCUs, we rely on TFLM. Since eFlash
memory of MCUs is read-only during runtime, YONO loads the model weights on SRAM
(read-write during runtime) and swaps the models by replacing the models’ weights using
PQ codebooks and indices stored on eFlash. The binary size of our implementation on an
MCU is only 0.41 MB, and the total size of PQ codebooks, indices, and other information
to compress the eight heterogeneous networks evaluated in §C.4.4 is 0.35 MB. Note that
the memory requirement of the seven models is 4.19 MB, which is 12.05x of what YONO
requires and 4.19x of what typical MCUs with 1 MB storage can support.

C.4 Evaluation

We now present the results of the evaluation on our system. §C.4.1 describes our experi-
mental setup. We evaluate the effectiveness of our system in the offline phase regarding
the performance (i.e., accuracy) and compression rate of the compressed models in an
MTL scenario. To make a comparison with prior work [92] that tackles MTL of different
neural networks, we begin with evaluating our system with the same datasets used in [92]
consisting of five datasets for two modalities (i.e., image and audio) (§C.4.2). After that, we
evaluate our system to what extent it can address multiple heterogeneous networks trained
with different modalities. Thus, we employ four different modalities of data ((1) Image,
(2) Audio, (3) IMU, (4) sEMG) by adding two more datasets in order to demonstrate
the scalability of YONO on diverse modalities in §C.4.3. Further, to demonstrate the
generalizabilty of YONO’s learned codebooks, we select two additional datasets in each
of the four modalities and evaluate our system to compress new models trained on these

64

datasets that YONO did not learn during its codebook learning stage (§C.4.4). Finally,
we present the results of our online in-memory model execution and swap operations in

§C.4.5.

C.4.1 Experimental Setup
Task

Our target application scenarios are based on dealing with dissimilar multitask learning.
For example, those applications are image classification, keyword spotting, human activity
recognition, and gesture recognition.

Evaluation Protocol

Following prior works [6, 84], 10% of data is used as the test set and the remaining as the
training set. In addition, to evaluate the effectiveness of the offline phase component of
our system, we report the accuracy and compression rate of the compressed models using
our system. We also use compressed model’s error rate (i.e., accuracy loss) compared to
the original model. Then, to evaluate the efficiency of the online phase component of our
system, we report the execution time and load/swap time of the models on MCU.

Baseline Systems

To evaluate the effectiveness of our work, YONO, we include various baselines in our
experiments as follows.

NWYV: Neural Weight Virtualization (NWV) [92] is the state-of-the-art heterogeneous
MTL system that treats weights of neural networks as consecutive memory locations which
can be virtualized and shared by multiple models. Note that we use reported results of
[92] on an MCU, which relies on simplified LeNet architecture.

Scalar Quantization (Int8): This baseline compresses a single model by quantizing
32-bit floats into low-precision fixed-point representation (e.g., 8-bit) [9, 111]. As in [111],
we employ both post-training quantization and quantization-aware training schemes. We
then report the results of the best-performing scheme in our evaluation. Besides, we only
include 8-bit quantization as sub-byte datatypes (e.g., 4-bit or 2-bit) are not natively
supported by MCUs [88]. We leave sub-byte quantization as future work.

PQ-S: This baseline uses PQ to compress a single model to a pair of the shared codebooks
across layers in the model. As this baseline does not share the codebooks across multiple
models, this can serve as a baseline for the single model compression and as the lower
bound in compression ratio among the PQ variants.

65

Table C.1: Summary of datasets, model architectures, mobile applications used in §C.4.2
and §C.4.3.

Modality Dataset Architecture = Mobile Application
MNIST LeNet Digit recognition
Tnace CIFAR-10 MicroNet-AD Object recognition
& SVHN MicroNet-AD Digit recognition
GTSRB MicroNet-AD Road sign recognition
Audio GSC MicroNet-KWS Keyword spotting
IMU HHAR MicroNet-AD Activity recognition

sEMG Ninapro DB2 Lightweight CNN Gesture recognition

PQ-M: This baseline uses PQ to compress multiple heterogeneous models to a pair of the
shared codebooks but does not apply our optimization process and heuristics as described
in Section C.2. We include this to conduct an ablation study to evaluate the impact of
the proposed optimization in our system.

PQ-MOpt: This baseline uses PQ to compress multiple heterogeneous models to a pair
of the shared codebooks and also apply the optimization process without the heuristics
described in Section C.2. We include this to conduct an ablation study to evaluate the
impact of the heuristics in our system.

Uncompressed (Original): An original model before compression. It is pretrained with
available training data and serves as the upper bound in terms of the accuracy metric.

C.4.2 Performance

Following [92], we start by evaluating YONO in MTL scenarios on two modalities: images
and audio signals which are widely used data modalities in mobile sensing applications.

Datasets. We employ the same datasets used in the prior work [92] to make a fair
comparison. First, four image datasets are employed, namely MNIST [112], CIFAR-10 [96],
SVHN [113], and GTSRB [114] associated with classifying objects of handwritten digits
(grayscale), generic objects, numbers (RGB), and road signs, respectively. Then, one audio
dataset of Google Speech Commands V2 (GSC) [115] for keyword spotting is used.

Model Architecture. We adopt optimized neural network architectures, designed to
be used in the resource-constrained setting, such as variants of MicroNet [88], simplified
LeNet used in [92]. For MNIST, we use the simplified LeNet as it is used in [92] and
the accuracy of such LeNet variant is very high at 98%. For other datasets (CIFAR-10,
SVHN, GTSRB, GSC), we use variants of MicroNet architecture to construct pretrained

66

models. To identify a high-performing and yet lightweight model to operate on embedded
and mobile devices, we conduct a hyper-parameter search based on different variants of
MicroNet (e.g., small, medium, large models), lightweight convolutional neural network
(CNN) architectures [8], the number of convolutional filters. A basic convolutional layer
consists of 3 x 3 convolution, batch normalization, and Rectified Linear Unit (ReLU). Then,
as our final model architectures, we use MicroNet-KWS-M for GSC and MicroNet-AD-M
(with the reduced number of convolutional filters {192}) for CIFAR-10, SVHN, GTSRB.
Throughout model training for all of the datasets, ADAM optimizer [85] and learning
rate of 0.001 are used. The datasets, architectures, and applications are summarized in
Table C.1.

Accuracy. We show the accuracy results here. Figure C.3 shows the accuracy of each
baseline so that we can analyze the impact of our proposed techniques in our system.
To begin with, the uncompressed (original) model serves as a performance upper bound.
8-bit quantization and PQ-S achieve high accuracy close to that of the original model,
showing a small average error rate of 0.9% and 2.8%, respectively, between each of the five
models after compression and their corresponding original models. However, in the case
of the CIFAR-10 dataset, PQ-S shows high error rates of 6.3% on average. This result
indicates that the specialized codebooks which target only one model can help retain the
performance of the original model in general but sometimes fail to retain it, as shown
in the case of CIFAR-10. Besides, PQ-M shows an accuracy loss of 4.3% on average.
For CIFAR-10, it shows a high error rate of 9.0%. In addition, although our proposed
EM-based iterative network optimization procedure can help in improving the accuracy,
PQ-MOpt still shows a substantial accuracy drop of 4.3% on average. This result indicates
that compressing multiple neural networks based on only one pair of codebooks is very
challenging. However, YONO shows that its accuracy drop is minimal (i.e., an average
error rate of 0.4%). Interestingly, in the case of GSC, YONO outperforms the accuracy of
the original model by 1.2% where YONO benefits from sharing weights via PQ codebooks.

This result indicates that YONO can effectively retain the accuracy of original models as
observed in the prior work on multiple MTL systems [92] and other techniques focusing on
a single model compression [9, 79, 101]. Further, it is an interesting result because YONO
can retain the accuracy of multiple heterogeneous models, which is more challenging
given that simply performing MTL would lead to the accuracy drop as shown in the
prior work, NWV [92]. Also, note that differently from [92] which used LeNet, we used
optimized network architectures such as MicroNet and lightweight CNN that can execute
on resource-constrained MCUs (refer to §C.4.5) and obtain very high accuracy. To name a
few, the pretrained models in our work achieve 90.05%, 94.48%, 90.74% on CIFAR-10,
SVHN, GSC compared to 59.26%, 85.74%, 78.38% reported in [92], respectively.

Compression Efficiency. Table C.2 shows the overall efficiency in compressing het-
erogeneous networks trained with five datasets of two modalities. First, the combined

67

7777 BNAY B It B PQ-S BN PQ-M B PQ-MOpt ENN YONO BB Original

Accuracy

‘
CIFAR-10 SVHN
Dataset

Figure C.3: The inference accuracy of the heterogencous MTL systems trained with five
datasets of two modalities. Reported results are averaged over five trials, and standard-
deviation intervals are depicted.

Table C.2: The compression efficiency of the heterogeneous MTL systems trained with
five datasets of two modalities.

NWYV [92] Int8 PQ-S PQ-M PQ-MOpt YONO Original

Ratio 8.08x 3.04x 9.47x 12.07x 12.07x 11.57x 1x
Size 0.13MB 096 MB 031 MB 024 MB 024 MB 0.25MB 291 MB

storage overhead of the five uncompressed models is 2.91 MB which is three times the
capacity of our target MCU'’s storage, which is 1 MB at maximum. However, considering
that to perform an inference on MCUs, it is required to have a space for program codes
of TFLM, input and output peripherals, input and output buffers, and other variables,
etc., the space used to store models needs to be below the storage size of 1 MB. Thus, it
is impossible to put those five models on an MCU and run multitask applications using
the uncompressed models. 8-bit quantization shows the lowest compression rate of 3.04x
among all the evaluated methods, and its storage size (0.96 MB) is just below the limit
of our employed MCU. Then, PQ-S shows a moderate compression rate of 9.47x and
decreases the required storage size down to 0.31 MB and thus can reside on an MCU.
Other baseline systems, PQ-M and PQ-MOpt, show a high compression rate of 12.07x
and reduce the storage requirement to 0.24 MB. This is because PQ-M and PQ-MOpt
share the same codebooks across the different applications. However, the savings in storage
come at the expense of loss of accuracy, as seen in the accuracy results discussed before. In

68

contrast, YONO achieves the best of both worlds, demonstrating a high compression rate
close to PQ-M and PQ-MOpt and negligible accuracy loss compared to the uncompressed
models. YONO obtains a 11.57x compression rate and decreases the storage overhead to
0.25 MB, showing a higher compression rate than NWV [92].

Overall, the results indicate that YONO can enable running multi-task applications on
MCUs while retaining high accuracy and low storage footprints.

C.4.3 Scalability

In this subsection, we apply YONO on seven datasets consisting of four different data
modalities ((1) Image, (2) Audio, (3) IMU, (4) SEMQG) to investigate to what extent our
system can effectively compress multiple networks trained on different data modalities
without losing its accuracy and compressive power. We select IMU and sEMG as additional
modalities because they are also widely used in mobile sensing applications [58, 25].

Datasets. On top of the five datasets used in the previous subsection, we add two datasets
of two additional modalities: HHAR [58] and Ninapro DB2 [63], corresponding to activity
recognition (based on IMU) and gesture recognition (based on sEMG), respectively. The
HHAR and Ninapro DB2 datasets are some of the most widely used HAR and sEMG
datasets, respectively.

Model Architecture. To identify the right model architecture for each dataset, we adopt
to use the optimized neural architectures and also conduct a hyper-parameter search as
described in §C.4.2. Then, we select the model which shows the best performance. As
a result, we use MicroNet-AD for HHAR and lightweight CNN architecture for Ninapro
DB2 (see Table C.1 for detail).

Accuracy. Figure C.4 presents the accuracy results of the seven datasets of four modalities
so that we examine the scalability of YONO to various modalities of data. Overall, the
accuracy of reconstructed models from baseline systems and YONO is slightly improved
since the error rates on the new datasets are smaller than those of the other five datasets.
Also, accuracy results of baseline systems and YONO reach similar observations as in
§C.4.2. 8-bit quantization shows a small average error rate of 2.0% but a relatively high
accuracy variance for HHAR. Also, PQ-S achieves high accuracy close to that of the
uncompressed models with small error rates of 3.0% on average, whereas it shows high
error in CIFAR-10. Then, the PQ-M and PQ-MOpt systems present an average error rate
of 4.2% and 4.0% respectively, indicating that our proposed EM-based iterative network
optimization procedure help improve the accuracy but still falls short of achieving the
original model’s accuracy. Also, in this setting, YONO performs the best and shows an
negligible accuracy loss of 0.5% on average.

Compression Efficiency. Table C.3 shows the overall efficiency in compressing heteroge-

69

BN Int8 EE PQ-S PQ-M B3 PQ-MOpt EN YONO B Original

0.90

S
%
S

Accuracy

e
2
=

0.60

§
§
N

(L L LLLLL L
< L L L L L L 2
VLl el il Ll Ll A
AN L L e 2

WL
VLl A

0.50

MNIST CIFAR-10 SVHN GTSRB

Dataset

H

)

AR NinaproDB2

Figure C.4: The inference accuracy of the heterogeneous MTL systems trained with
seven datasets of four modalities. Reported results are averaged over five trials, and
standard-deviation intervals are depicted.

Table C.3: The compression efficiency of the heterogeneous MTL systems trained with
seven datasets of four modalities.

Int8 PQ-S PQ-M PQ-MOpt YONO Original

Ratio 2.96x 9.27x 12.29x 12.29x 11.77x 1x
Size 1.27 MB 0.41 MB 0.31 MB 0.31 MB 0.32 MB 3.76 MB

neous models trained with seven datasets of four modalities. Similar to the compression
results in §C.4.2, the total size of the seven uncompressed models (3.76 MB) is larger than
the storage budget for our target MCU. In the case of 8-bit quantization, the required
storage size of the seven compressed models is 1.27 MB, larger than our storage budget
of 1 MB. This result indicates that 8-bit quantization is not suitable for operating many
heterogeneous neural networks simultaneously on our target MCU. However, YONO re-
quires at most 0.32 MB. Since our system can effectively compress multiple heterogeneous
models (showing 11.77x compression ratio), the incurred storage requirement is minimal.
For example, when two additional models (for HHAR and Ninapro DB2) are included in
an MTL system, YONO incurs only 0.07 MB additional overhead, whereas the original
models’ storage size increases by 0.85 MB.

To summarize, our results show that YONO is scalable as it can accommodate many
applications utilizing different input modalities while achieving high performance and small

70

storage overhead.

C.4.4 Generalizability

We now investigate the generalizability of our multitasking system on new models/datasets
and different network architectures unseen during the codebook learning phase of the
offline component. Specifically, we evaluate whether YONO can achieve high accuracy
on the unseen models from new datasets using the same codebooks that are learned
previously (§C.4.3). This can be particularly useful since the learned codebooks of YONO
can still be utilized to compress unseen models in different network architectures from
new datasets without learning new codebooks again whenever a user wants to incorporate
a new task/dataset into the system. Also, note that since the codebooks are not modified,
the reported results in §C.4.3 are not affected, ensuring high accuracy on previous datasets.
Then, in §C.4.4, we select two new datasets in each of the four modalities for a robust
evaluation.

Datasets. In total, we add eight new datasets: two image datasets (1) FashionMNIST [116],
(2) STL-10 [117], and two audio datasets (3) EmotionSense [6], (4) UrbanSound [72], and
two HAR datasets (5) PAMAP2 [59], (6) Skoda [60], and lastly two sEMG datasets (7)
Ninapro DB3 [63] and (8) Ninapro DB6 [118]. These are widely used real-world application
datasets corresponding to classification problem as follows: (1) ten fashion items, (2) ten
generic objects, (3) five emotions, (4) ten environmental sounds, (5) 12 activities, (6) ten
activities, (7) ten gestures of amputees, (8) seven gestures of ordinary people, respectively.

Model Architecture. To demonstrate that YONO can effectively address new network
architectures that were not shown during the offline codebook learning phase, we include
another widely used architecture, DS-CNN [90], in our work. Then, we follow the same
hyper-parameter search process as described in §C.4.2. Table C.4 summarizes the identified
network architectures for each dataset and its associated mobile application.

Accuracy. Note that we exclude PQ-S as it needs to learn PQ codebooks on a given
dataset and then perform network finetuning on the given dataset. However, in this
scenario, the system needs to adapt to new (unseen) datasets. This point makes the
scenario particularly challenging since an MTL system needs to incorporate unseen datasets
and network architectures. Nonetheless, an MTL system that can address this challenge
could become very useful in practice since it is adaptable.

To begin with, Figure C.5 shows the accuracy results on the eight unseen datasets with
diverse network architectures. 8-bit quantization presents a moderate error rate of 2.5%
similar to the results in §C.4.2 and §C.4.3 as the current evaluation setup does not make
a difference for the single model compression approach. Conversely, PQ-M shows a
substantial accuracy drop (9.4%) compared to the original model, which is worse than the
previous two scenarios where it obtained error rates of 4.3% and 4.2%. In fact, on one

71

Table C.4: Summary of datasets, model architectures, mobile applications used in §C.4.4.

Modality Dataset Architecture = Mobile Application
Imace FashionMNIST DS-CNN Object recognition
& STL-10 DS-CNN Object recognition
Audio EmotionSense Lightweight CNN Emotion recognition
UrbanSound DS-CNN Sound classification
MU PAMAP2 MicroNet-AD Activity recognition
Skoda MicroNet-AD Activity recognition
SEMG Ninapro DB3 Lightweight CNN Gesture recognition

Ninapro DB6 MicroNet-AD Gesture recognition

Table C.5: The compression efficiency of the heterogeneous MTL systems applied to unseen
datasets of four modalities.

Int8 PQ-M PQ-MOpt YONO Original

Ratio 2.80x 13.60x 13.60x 12.37x 1x
Size 147 MB 0.30 MB 0.30 MB 0.33 MB 4.11 MB

dataset (Ninapro DB6), PQ-M shows a 33.0% error rate. Although PQ-MOpt improves
upon PQ-M, the amount of improvement is small. PQ-MOpt shows a 8.4% accuracy drop
on average compared to the original model. Also, for Ninapro DB6, the accuracy of PQ-
MOpt shows a sharp decrease of 28.1% compared to the original model, demonstrating the
difficulty of this scenario. Surprisingly, however, YONO does not experience a considerable
accuracy loss. It shows only 0.6% accuracy loss on average. Besides, YONO shows a low
variance of accuracy loss across the employed datasets. In fact, YONO even improves upon
the accuracy of uncompressed models for some datasets such as EmotionSense, Skoda, and
Ninapro DB6. These results highlights that YONO is capable of retaining the accuracy of
original models even in the most challenging scenario of incorporating unseen datasets
and architectures.

Compression Efficiency. The compression results for heterogeneous models with eight
unseen datasets are shown in Table C.5. The size of the uncompressed models is the
largest, 4.11 MB, in this setup compared to §C.4.2 and §C.4.3. YONO shows an impressive
compression ratio of 12.37x and require storage size of 0.33 MB after compressing eight
heterogeneous networks. It is worth noting that we included a new network architecture that
YONO did not learn during its offline codebook learning phase. Yet, YONO successfully
compress different architectures with an even higher compression rate (11.57x in §C.4.2
and 11.77x in §C.4.3) without loss of accuracy on all the unseen datasets.

72

BN Int8 PQ-M EZE PQ-MOpt [N YONO [Original

1.00

0.90

Accuracy
(=1
%
S

0.70

0.60

WLl Ll A
(L LA
VL L LR
V(L
V(L LA

050 FashionMNIST STL-10 Emotion UrbanSound PAMAP2

Dataset

2}

koda NinaproDB3 NinaproDB6

Figure C.5: The inference accuracy of the heterogeneous MTL systems applied to unseen
datasets of four modalities. Reported results are averaged over five trials, and standard-
deviation intervals are depicted.

In summary, the results here hint that YONO can effectively compress different het-
erogeneous models trained on unseen datasets without losing accuracy and demonstrate
the generalizability of YONQO'’s codebooks and the effectiveness of the proposed network
optimization and optimization heuristics.

C.4.5 Evaluation on In-Memory Execution and Model Swapping
Framework on MCUs

We finally examine the run-time performance of the online component of YONO, the
in-memory execution and model swapping framework, introduced in §C.2.6. In specific,
we evaluate the latency and energy consumption of model execution and model swapping
of YONO on an MCU. Also, we include an alternative approach to YONO as a baseline
that relies on an external SD card as a secondary storage device for storing heterogeneous
networks and on in-memory execution similar to YONO. We employ the same datasets
used in the previous subsections. In Figures C.6 and C.7, we report the results of upper
bound (i.e., slowest or the most energy-consuming) and lower bound (i.e., fastest or the
least energy-consuming) to show the range of latency and energy consumption of YONO
and the baseline based on the identified network architectures trained on the datasets in
§C.4.2-§C.4.4 (see Tables C.1 and C.4). We use a MicroNet-AD model based on CIFAR-10
as upper bound and a lightweight CNN model based on Ninapro DB2 as lower bound.
Although results for other models and datasets are omitted, they reside within the reported

73

N
(=
(=

0 Bascline [ENN YONO 370 I Bascline ESSN YONO

%)
[
=

160 159

%)
(=3
(=

[
[
=

Latency (ms)
3 8
Latency (ms)
1]
S

@
3

w
=3

(=

(=

25 51.0
16 16 50 24.9
2.8
OMicroNel—AD/ Lightweight CNN/ 0MicroNet—AD/ Lightweight CNN/
CIFAR-10 NinaDB2 CIFAR-10 NinaDB2
(a) Execution (b) Loading/Switching

Figure C.6: The model execution and loading/switching time of YONO and the baseline.
latency and energy consumption as in Figures C.6 and C.7.

Latency. We measure the latency of the model execution and model loading/swap by
using MBed Timer API, as shown in Figure C.6. In terms of execution time, both YONO
and the baseline show a swift execution time (16-160 ms per inference) that can be useful
in practice, and there is no meaningful latency difference between them since both rely
on in-memory execution. However, for model loading/swap time, YONO accelerates the
model switching. YONO reduces model loading/swap time by 93.3% (370 ms vs. 24.9
ms) in a MicroNet-AD model based on CIFAR-10 and 94.5% (51.0 ms vs. 2.8 ms) in a
lightweight CNN model based on Ninapro DB2 compared to the baseline. Note that we
did not conduct a direct comparison on-device with the prior work [92] since its source
code is not shared and the used MCUs for experiments are not the same.

Energy Consumption. We measure the energy consumption of model execution and
loading/swap on the MCU using YONO and the baseline, as shown in Figure C.7. We
use the Tenma 72-7720 digital multimeter to measure the power consumption and then
compute the energy consumption over time taken for each operation (i.e., inference and
model loading). Similar to the latency result, the energy consumption for executing models
does not show the difference as explained above. However, for the model loading/swap
task, YONO decreases energy consumption by at minimum 93.9% (82.7 mJ vs. 5.1 mJ in
a MicroNet-AD model on CIFAR-10) and at maximum 95.0% (11.4 mJ vs. 0.6 mJ in a
lightweight CNN model on Ninapro DB2) compared to the baseline.

To summarize, the results demonstrate that YONO enables fast (low latency) and efficient

(low energy footprints) model execution and loading/swap on an extremely resource-limited
IoT device, MCU.

4

50 100
[Baseline ES YONO =3 Baseline ES YONO
82.7
oS40 382 379 o 80
£ E
2,30 2 60
£ g
@ =
= w»
s s
O 20 S 40
)
S 5}
1=
z 2
=10 = 20
11.4
38 38 51
0.6
OMicroNet—AD/ Lightweight CNN/ 0MicroNet—AD/ Lightweight CNN/
CIFAR-10 NinaDB2 CIFAR-10 NinaDB2
(a) Execution (b) Loading/Switching

Figure C.7: The energy consumption of model execution and loading/switching of YONO
and the baseline.

C.5 Discussion

Impact on Heterogeneous MTL Systems. YONO represents the first framework
that can compress multiple heterogeneous models and be applicable to unseen datasets.
Also, YONO ensures negligible or no loss of accuracy in compressing many different
models (architecture) on multiple datasets. This is achieved by only one pair of PQ-based
codebooks, our novel optimization procedure, and heuristics. Thus, we envisage that
YONO could become a practical system to deploy heterogeneous MTL systems on various
embedded devices and platforms in many real-world applications in the future. We leave
the wide deployment and performance evaluation of YONO on other embedded platforms
under real-world application scenarios as future work.

Application Scenario. Let us consider an example of a real-world application. Given an
intelligent authentication system for a smart home, the system would need to detect tenants’
identification based on images and voice (image classification and voice recognition). Then,
the system could take voice commands as inputs from the identified tenant (e.g., keyword
spotting). This simple application scenario already needs three different models, which
could satisfy the necessity of a heterogeneous MTL system, YONO.

Generalizability of YONO. In Section C.4, we have demonstrated that YONO can
incorporate heterogeneous models and datasets (four different modalities) consisting of 15
datasets (i.e., seven datasets for learning codebooks in §C.4.3 and the other eight unseen
datasets in §C.4.4), which shows that YONO is a generalizable framework. Other datasets
and network architectures (e.g., LSTMs [23] and CNNs with large-sized kernels like 5x5 or
7x7) that can be employed and tested on YONO are left as future work.

5

Limitation. To enable model switching during the runtime, we design YONO to load
the model in the main memory instead of the storage of an MCU. However, since SRAM
is a limited on-chip resource and typically smaller than eFlash, our design choice may
limit the applicability of YONO, especially for low-end MCUs with smaller SRAM sizes
such as 128 KB. Therefore, it would be worthwhile to further investigate memory-efficient
ways to reduce the required main memory space for model execution while enabling the
model switching at run time. Better usage of FlatBuffer serialization format to hold model
weights can be interesting future work since the weights of a model takes the majority of
the space.

C.6 Related Work

Multitask Learning. Multi-task learning allows learning correlated tasks such that
accuracy of both or one of the tasks is improved by exploiting the similarities and differences
across tasks [119]. Common approaches include common feature learning [120, 121}, low-
rank parameter search [122, 123], task clustering [124, 125], and task relation learning [126,
127]. These works achieve limited compression by sharing the first few network layers.
However, their main goal is to increase the robustness and generalization of multiple
task learners. Thus, keeping multiple heterogeneous DNN models into the extremely
limited memory of embedded devices, along with managing and executing these models
(achieving different tasks) efficiently at run-time, are challenging to the aforementioned
works. Comparing this, YONO allows to run multiple DNN models efficiently while
remaining within the limited resource constraints on embedded devices.

Besides, NWV [92] was introduced to compress multiple heterogeneous models of different
network architectures and tasks. NWV also minimizes the context switching overhead
by retaining all shared weights on the memory. However, NWV’s compression ratio is
constrained to 8.08x, limiting the multi-tasking [oT system with a small memory footprint
to operate many tasks in real-time. Also, the work only employs a simplified LeNet
architecture in the experiments of IoT use cases, and thus the accuracy of the system is
limited. Conversely, YONO not only increases compression rates but compresses even the
highly optimized models (e.g., MicroNet, DS-CNN), while achieving high accuracy that is
useful in practice.

Mobile and Embedded Sensing Applications. Deep learning is increasingly being ap-
plied in mobile and embedded systems as it achieves state-of-the-art performances on many
sensing applications such as computer vision applications [93], audio sensing [45], activity
recognition [58], gesture recognition [63]. First of all, there exist many vision applications,
to name a few, tiny image classification [96, 113], traffic sign recognition [114]. Besides,
audio sensing application is also one of the foundational mobile sensing applications [7, 40|
that much research has focused on to deliver behavioral insights to users. The audio

76

sensing tasks include Emotion Recognition (ER) [6], Speaker Identification [128], Environ-
mental Sound Classification (ESC) [84], and Conversation Analysis [129], and Keyword
Spotting (KWS) [90]. Next, one of the most widely studied mobile sensing application
is HAR [23, 86], where the aim is to determine various human activities automatically
using body-worn IMU (Inertial Movement Units) sensors. In application frequently used
in mobile sensing is to recognize hand gestures (e.g., fist and open palm) using SEMG
(surface Electromyography) signals generated during muscle contractions [25, 47]. SEMG
signal is used for medical [130], rehabilitation [131], human-computer interactions [48, 49],
upper-limb prostheses control [132], and authentication [133].

Model Compression. Many researchers focus on developing a method to improve
efficiency without sacrificing the model’s accuracy due to a large burden of training deep
network architecture and its data [100]. First of all, many researchers have focused on de-
signing and hand-drafting more efficient network architectures, namely, SqueezeNets [134],
ShuffleNets [108], and MobileNets [106, 107], and MicroNet [88]. In particular, we em-
ploy MicroNet as one of our backbone network architectures since it shows impressive
performance and efficiency on tiny loT systems such as MCUs.

In addition, another thread of research is weight pruning methods that leverage the inherent
redundancy in the weights of neural networks [79, 135, 136, 137, 138, 95]. Furthermore,
quantization of model weights and activiations has been an active area of research. Many
prior works quantize the weights and activations from 32-bit float to 8-bit integer [9],
ternary values (2-bit) [139, 140], binary values (1-bit) [141, 76, 142, 143], and mixed
precision [144, 145]. Also, weight clustering methods are proposed to group weights into
several clusters to compress a model.

Moreover, researchers studied techniques that quantize an array of scalars of the weights to
compress a model or a particular layer. Some works extended a sparse coding [146] to learn
a compact representation that covers the feature space of weights of a model [147, 148].
Also, many researchers examined vector quantization-based methods [100]. For example,
Gong et al. [99] conducted an empirical study to compare binarized networks, scalar
quantization using k-means (i.e., weight clustering), Product Quantization (PQ) [11].
Several recent works apply PQ to compress a deep neural network with more than 11
million parameters [101, 102, 103]. Albeit its impressive results, all the prior works only
focused on utilizing PQ to a single and bulky model at a scale of millions of parameters,
lacking the understanding of how the method can be used to deal with heterogeneous MTL
applications and compress tiny models that should fit into the extremely limited memory
budget of MCUs (less than 512 KB). Thus, for the first time in this work, we develop
YONO, a PQ-based model compression framework that operates heterogeneous models on
tiny IoT devices. We propose a novel network optimization procedure and heuristics to
achieve high accuracy close to the uncompressed models. Also, YONO enables fast and
efficient model execution and swapping on an MCU.

77

C.7 Conclusions

We have presented an efficient MTL system, YONO, that compresses multiple hetero-
geneous models through PQ codebooks, our novel network optimization and heuristics.
First, we implemented YONQO’s offline component on a server and its online component
on a critically resource-constrained MCU. Then, we demonstrated its effectiveness and
efficiency. YONO compresses multiple heterogeneous models up to 12.37x with minimal
or near to no accuracy loss. Interestingly, YONO can successfully compress models trained
with datasets unseen during its offline codebook learning phase. Finally, YONO’s online
component enables an efficient in-memory model execution and loading/swap with low
latency and energy footprints on an MCU. We envision that methods developed for YONO
and our research findings could pave the way to deploy practical heterogeneous multi-task
deep learning systems on various embedded devices in the near future.

Acknowledgments

This work is supported by a Google Faculty Award, ERC through Project 833296 (EAR),
and Nokia Bell Labs through their donation for the Centre of Mobile, Wearable Systems
and Augmented Intelligence to the University of Cambridge.

78

Appendix D

MetaCLNet: Rehearsal-based Meta
Continual Learning with Compressed
Latent Replay and Neural Weights

79

Abstract

Continual Learning (CL) methods are designed to help deep neural networks (DNNs) adapt
and learn new knowledge without forgetting previously learned information. However,
current CL methods suffer from two major issues: (a) they typically require a moderate to
a large number of training samples to learn new classes as in the case of traditional CL
methods, and (b) Meta CL methods require a few samples of labeled training data but are
still limited in performance including lower accuracy, large memory footprints and high
computational costs. This limits their applicability to real-world scenarios where labeled
user data is not abundant or CL needs to run on resource-constrained edge devices.

In this work, we propose MetaCLNet, a novel rehearsal-based Meta CL method, that
achieves the best of both worlds: enhanced CL performance and improved system effi-
ciency. MetaCLNet combines rehearsal techniques and meta-learning for the first time to
ensure high CL performance (less forgetting, fast learning, and high accuracy). Also, to
minimize resource overheads, MetaCLNet employs various optimization techniques such
as compression of rehearsal samples and quantization of neural weights and activations.

MetaCLNet achieves near optimal CL performance, falling short by only 2.8% on accuracy
compared to the oracle, outperforming existing Meta CL methods with substantial accuracy
gains of 4.1-16.1%. Furthermore, compared to the state-of-the-art (SOTA) Meta CL
method, MetaCLNet drastically reduces the memory footprint by 178.7x, end-to-end
training latency by 80.8-94.2%, and energy consumption by 80.9-94.2%. We successfully
deployed MetaCLNet on two edge devices, thereby enabling efficient CL on resource-
constrained platforms where it is impractical to run SOTA methods.

D.1 Introduction

With the rise of mobile devices, and the Internet of Things (IoT), the proliferation of
sensory-type data has fostered the adoption of deep neural networks (DNN) in the modeling
of a variety of mobile sensing applications [1]. A crucial characteristic common to these
applications, often sitting on edge devices, is the need for a trained model to accommodate
new classes and adapt to a dynamically changing environment. In such settings, the ability
to continually learn [2, 3, 7], that is, to learn new knowledge (i.e., new classes in this work)
without forgetting how to perform previously learned knowledge, becomes essential yet
challenging. For example, let us consider a real-world application scenario of Continual
Learning (CL) in the wild. A user has a DNN model deployed on a smartphone or an
embedded device that can perform voice recognition of simple keywords such as 'yes’ and
'no’ or object recognition to identify simple objects from images such as ’cars’ and 'buses’.
Then, as time passes, the user wants the deployed model to recognize new keywords
and image types to simulate the real-world scenario akin to a human who can learn new
concepts continuously. Also, note that the user is reluctant to label many ground-truth
samples for new keywords and images due to a high manual effort.

To enable Continual Learning (CL), many approaches have been proposed in the liter-
ature. This includes regularization-based methods [29, 36|, dynamic architecture-based
methods [149, 30, 150], and rehearsal-based methods [13, 14, 65]. Although these CL
methods largely alleviate the forgetting issue of a learned model, they are data hungry,
since a large number of labeled training samples are required to learn new information
continuously. This also incurs high resource overheads: computational and memory. Hence,
the applicability of the aforementioned CL methods to real-world mobile applications,
where labeled user data is scarce and the computing resources are constrained, is limited.

Meta CL [151, 152, 153] has been proposed to resolve the challenges of traditional CL
methods, alleviating the issues mentioned above by relying only on a few samples of new
classes to adapt and learn. However, as shown in Figure D.la, Meta CL’s performance
degrades when many classes are added. Additionally, state-of-the-art (SOTA) Meta CL
methods such as OML+AIM and ANML+AIM [153] require a large memory footprint
to perform CL, as shown in Figure D.1b. This large required memory easily exceeds the
RAM size of embedded devices such as Raspberry Pi devices (e.g., 512 MB or 1 GB). Also,
we observed that the end-to-end training time of SOTA Meta CL methods to conduct CL
for multiple classes is very computationally expensive. These aspects make prior Meta CL
methods very challenging to be deployed on resource-constrained devices.

This Work. To address these limitations and challenges, we propose and develop a CL
system, MetaCLNet, that achieves: (1) superior accuracy in continually learning new
classes without forgetting existing classes with only a few training samples (10-30) close
to the upper bound performance based on i.i.d. training, (2) drastically lower system

81

——
o ANML+AIM 0 ANML B OML+AIM ESSI ANML+AIM
. =%+ OML+AIM 1750

=0+ ANML 1562

o

=N
@
S
S

o

n
)
G
S

Accuracy

N

~
<
%
S

474

w
=3
=

Memory Footprints (MB)
)
(=3
(=3

0.3

0.2 0

5 10 15 20 25 30 ANML OML+AIM ANML+AIM
Number of Classes Learned CL Method
(a) Performance (b) Memory Overhead

Figure D.1: Preliminary analysis of the Meta CL methods.

overheads (e.g., memory footprint) compared to SOTA and (3) fast learning for rapid
online deployment on the edge devices.

Rehearsal-based Meta CL. To solve the accuracy degradation problem of the Meta CL
methods, MetaCLNet combines Meta CL with rehearsal-based replay. In prior Meta CL
methods, the given samples for learning new classes are discarded once they are used for
training. Conversely, recognizing the importance of such samples, MetaCLNet stores them
(exemplars) to prevent forgetting when it encounters and learns new classes by replaying
the saved samples (raw data or latent representations) of learned classes (see Sections D.2.3
and D.2.4).

Compressed Latent Replay. We adopt various optimization techniques to minimize the
resource overheads of our system. We use a latent representation of the rehearsal samples
instead of the raw data themselves. Also, as 90% of the values of the latent representations
are zeros due to ReLLU non-linearity, we utilize the sparse bitmap compression [154] to store
the indices of the non-zero values and discard the zero values (Section D.2.5). To maximize
the compression rate even further, MetaCLNet applies Product Quantization (PQ) [11]
on the non-zero values of latent representations after the sparse bitmap compression
(Section D.2.6).

Quantized Neural Weights/Activations. On top of the sparse bitmap compression
and PQ, we further optimize our system by quantizing the weights and activations of the
feature extraction network frozen during the deployment phase. Neural weight quantization
decreases the model size and latency to perform inference. Freezing the network enables
rapid on-device learning of new classes on the fly as MetaCLNet can bypass the execution

82

of the feature extraction part during training and update the classifier part with the
compressed samples for rehearsal, which is computationally lightweight than updating the
whole network (Section D.2.7).

To evaluate MetaCLNet, we employ two image datasets, CIFAR-100 [96] and Minilm-
ageNet [155], used in prior SOTA Meta CL work [153] (as this allows us to compare
performance fairly) and an audio dataset, Google Speech Command V2 (GSCv2) [115]
to show generalization to another type of data. We show that MetaCLNet achieves near
optimal CL performance, falling short by only 2.8% accuracy compared to the upper
bound performance (oracle) in our evaluation. MetaCLNet also outperforms current Meta
CL methods with substantial accuracy gains of 4.1-16.1% on average for the three datasets,
demonstrating the effectiveness of co-utilization of Meta CL and rehearsal-based learning.
MetaCLNet adopts various compression techniques (i.e., sparse bitmap compression and
PQ) that can effectively reduce the burden of storing replay samples (either raw data
or latent representations). Moreover, quantizing the feature extractor of the network
into 8-bit integers further decreases the resource requirements (i.e., memory footprint)
of MetaCLNet. As a result, to perform CL on all three datasets, MetaCLNet requires
only 3.40-15.45 MB of memory and thereby obtains a compression rate of 11.4-178.7x
compared to ANML+4AIM (SOTA MetaCL method).

We successfully deployed MetaCLNet on two edge devices (Jetson Nano and Pi 3B+),
enabling more efficient CL on resource-constrained platforms on which SOTA does not
always fit due to their large memory requirements. Further, MetaCLNet decreases the
end-to-end training time by 80.8-94.2% and the overall energy consumption on the edge
devices by 80.9-94.2% compared to ANML+AIM. Furthermore, we perform an ablation
study to identify the impact of each proposed component in our system and a parameter
analysis to examine the effect of the various hyper-parameters that could affect the CL
performance of our system (Section D.4).

The contributions of MetaCLNet are summarized as follows.

e To the best of our knowledge, MetaCLNet is the first CL system that combines Meta
CL and rehearsal-based CL strategy to develop a rehearsal-based Meta CL system
that achieves high accuracy.

e We employ several optimization techniques including sparse bitmap compression and
PQ on the latent representations of rehearsal samples. On top of such optimization,
further quantizing neural weights and activations of the feature extractor of the
deployed DNN models allows MetaCLNet to run on the edge devices directly, which
is infeasible for SOTA to run due to its excessive memory requirements.

e Through extensive experiments on Jetson Nano and PI 3B+, we demonstrate that
MetaCLNet outperforms existing Meta CL baselines in terms of latency and energy

83

consumption.

e Finally, the ablation study reveals that each proposed component of this work is
effective in making our CL system more efficient. Also, the parameter analysis
demonstrates that MetaCLNet can achieve similar CL performance to the upper
bound with only 10-30 samples per class, show rapid convergence with one or two
epochs, and accomplish a high compression rate for latent representations.

D.2 Design

In this section, we begin by introducing the problem formulation of CL in more detail
and the overview of MetaCLNet (§D.2.1). We then describe Meta CL and relevant prior
works (§D.2.2). After that, we propose a novel rehearsal-based Meta CL method that
can effectively address the performance degradation issues of existing Meta CL methods
(§D.2.3). Also, we describe two rehearsal techniques that are often utilized in the CL
literature (§D.2.4). In addition, we present two techniques for optimizing the resource
overheads incurred by the saved rehearsal samples (§D.2.5 and §D.2.6). On top of that,
we further quantize the model itself to minimize the overall memory footprint required for
performing CL during deployment (§D.2.7).

D.2.1 Problem Formulation & System Overview

Problem Formulation. In this work, we employ the Sequential Learning Tasks
(SLTs) [32] where new classes can emerge over time. Hence, the CL needs to continually
learn new classes without forgetting the previously learned classes, similar to real-world
application scenarios. In other words, SLTs indicate that a CL model continuously learns
a stream of classes, 17,75, ..., T}, ..., Ty, one after another instead of learning all the classes
at once, which is similar to the class-incremental learning setting [53]. N is the number of
classes, and each T} consists of (X;,Y;) for inputs X; and target labels Y; from sets & and
Y, respectively. A CL model g parameterized by 6 learns a mapping, go : X —).

For a given CL problem of SLTs, the goal of CL methods is to minimize the following
objective for some loss function (-, -):

LO) =) Exyr,l(gs(x),y) (D.1)

i=1

where 6 represents a set of weights that are updated to minimize the objective. In this
work, we focus on the classification problem. The frequently used symbols are listed in
Table D.1.

84

Table D.1: Frequently-used symbols and definitions.

Symbol Definition

T=(X,Y) class with inputs X and targets YV’
T; (t)-th class of a sequence of classes
X, Y, inputs and targets of (t)-th class
xt yt (i)-th entry of inputs and targets of (t)-th class

N total number of classes in a given sequence
I, ® lo norm, Hadamard product
fo feature extractor parameterized by 6
oy classifier parameterized by 6
oNM weights of neuromodulation network
oF weights of prediction network
geLE weights of classifier network
ov weights of AIM
GRLN weights of representation learning network

oFEN weights of prediction learning network

System Overview. we now describe the overview of MetaCLNet that combines the idea
of Meta CL and rehearsal-based learning and optimizes the system efficiency in terms of the
memory footprint, computational costs, and energy consumption on the embedded devices.
MetaCLNet is comprised of two phases. The first phase, called meta-training, is performed
on a server to find the good weight initialization by utilizing meta-learning in the CL
setup with a few samples. The second phase is meta-testing where a meta-learned model is
deployed on embedded devices and learns new classes continually. In addition, as shown in
Figure D.2; there exist three components in MetaCLNet to ensure excellent performance
and efficiency when it is deployed on resource-constrained devices: (1) co-utilization of
Meta CL and rehearsal strategy to resolve the accuracy degradation issue, (2) adoption
of compression techniques such as the sparse bitmap compression and PQ to reduce the
memory footprint of rehearsal samples, and (3) quantization of weights and activations of
the feature extractor to reduce the memory footprint, computational costs, and energy
consumption.

D.2.2 Meta Continual Learning

We now provide an introduction to Meta CL. Then, we explain how the learning procedure
of meta-learning is utilized in the context of the CL problem and helpful for mitigating the
forgetting issue by reviewing three of the state-of-the-art Meta CL methods [151, 152, 153].

Given a single trajectory of samples from a stream of classes 7, minimizing the CL loss of

85

Feature Extractor
(Frozen & Quantized) Classifier

(Continually
Learned)

Fonm
New l Bitmap and PQ-based
Inputs (x) Ly fop Compression Module > ¢ocLr —+— Outputs (y)

Bitmap and PQ-based Compression Module

Latent
A —> —) > Decompressed Latent
Activations (z) Activations (z')
From Feature Bitmap Bitmap To Classifier
Extractor Non-Zero PQ Index Decompressed

PQ Encode
PQ Decode!

Activations Non-Zero
Activations

Figure D.2: The overview of the proposed CL system, MetaCLNet.

DNN that is trained end-to-end is very challenging [151]. First of all, learning a stream
of different classes incurs catastrophic forgetting (CF) [27] (i.e., DNN forgets previously
learned classes when it starts to learn a new class). Moreover, training DNNs is extremely
sample-inefficient: the minimization problem requires multiple training epochs to converge
to a reasonable solution. On one hand, many CL methods [150, 14, 29] are proposed to
alleviate the forgetting problem. However, they require a moderate or large amount of
labeled data and many training epochs. On the other hand, another learning approach,
called meta-learning, is proposed to make DNN more sample-efficient [156], requiring
only a few samples to adapt or learn new data distributions from a correlated stream of
data [157, 158]. However, these meta-learning methods neglect the forgetting problem of
the already learned classes.

To overcome the challenges mentioned thus far, several Meta CL methods [151, 152, 153]
are proposed. First, to enable fast adaptation with only a few samples, Meta CL methods
are based on the training procedure of meta-learning. The meta-learning uses an outer
loop and an inner loop where the outer loop takes steps to improve the learning ability of
the inner loop that optimizes the DNN model with a few samples (see Algorithm 4 for
detail). This phase is called meta-training and aims to find a better weight initialization
of DNNs for fast adaptation with a few samples. After the meta-training is finished, the
quality of the learned DNNs is tested using only inner loop updates without outer loop
updates. This phase is referred to as meta-testing (see Algorithm 5 for detail).

Second, to prevent the forgetting problem, Meta CL methods separate the network
architecture into the feature extractor and the classifier. This separation of the feature

86

extraction and the classifier parts is the common network architecture of the Meta CL
methods such as OML, ANML, and Attentive Independent Mechanisms (AIM) methods
(OML+AIM and ANML+AIM). Then, Meta CL adopts the concept of fast and slow
learning on an architecture level: the feature extractor is updated in the outer loop (slow
weights) to prevent forgetting, and the classifier is updated in the inner loop (fast weights)
to learn new classes swiftly. This approach has proven to be useful in preventing CF
over many classes. In addition, the network architectures of prior Meta CL methods are
represented as follows. For OML, the feature extractor is denoted as a representation
learning network (RLN), fyren. Then, the classifier is referred to as a prediction learning
network (PLN), ¢grrv. Note that AIM layers are parameterized by " and are inserted
between the feature extractor and the classifier. The output of OML+AIM, y, is computed
as follows.

Y = ¢orrn (fow (foren (X))) (D.2)

Next, ANML is composed of three networks: a neuromodulatory network, fovum, and a
prediction network, fyr that constructs the feature extractor, followed by the classifier
part, fopcrr. Within the feature extractor, the neuromodulatory network is to modulate
the outputs of the prediction networks by performing the Hadamard product between
the outputs of those two networks before passing it to the classifier. Like OML+AIM,
ANML-+AIM has AIM layers inserted between the feature extractor and the classifier.
The output of ANML+AIM, y, is then calculated as follows.

Y = ¢Qpcrr (fgw (ngM (X) ® ng (X))) (D3)

D.2.3 MetaCLNet

As described in §D.2.2, current Meta CL methods are useful in mitigating the forget-
ting problem, however, they all come with some limitations. For example, while OML
and ANML help alleviate the CF issue compared to the case without any CL applied,
these methods often fail to maintain high CL performance. However, OML+AIM and
ANML4AIM require remarkably more model parameters (e.g., 3-15x) than OML and
ANML, increasing the memory footprint for training. Therefore, we propose our novel
rehearsal-based Meta CL system, MetaCLNet, to address these limitations. This subsection
describes how we combine the Meta CL and rehearsal strategy to solve the forgetting
problem and meanwhile ensure high performance.

Given a stream of classes, T, the aim of Meta CL is to learn new classes one after
another with only a few samples (e.g., 30) instead of training all the classes at once in
i.i.d. fashion [7]. In prior Meta CL methods, the given samples are discarded once they
are used for training. However, according to the CL literature [159], rehearsal-based CL
methods often outperform other types of CLL methods such as regularization-based and
architectural-based CL methods by identifying and saving representative samples (i.e.,

87

exemplars) and replaying these stored samples while learning new classes. Inspired by
rehearsal-based CL, we propose a novel Meta CL method called rehearsal-based Meta
CL by incorporating rehearsal strategy into the Meta CL. In detail, MetaCLNet stores
the given samples and then replays these saved samples for rehearsal to solve forgetting
issues (for previously learned classes) when learning new classes. Besides, MetaCLNet
employs the network architecture of the prior Meta CL work, ANML, consisting of the
feature extractor and the final classifier. Also, MetaCLNet chooses the last layer of the
feature extraction part as the latent replay layer and stores the activations of the layer as
rehearsal samples as MetaCLNet eventually quantizes and freezes the feature extraction
part during deployment as explained in Section D.2.7. We now explain the meta-training
and meta-testing procedures of MetaCLNet in more detail.

Meta-Training and Meta-Testing Procedures. Algorithm 4 shows the procedure of
meta-training of Rehearsal-based Meta CL, MetaCLNet. First of all, the meta-training
process of rehearsal-based Meta CL is the same as that of Meta CL [152]. In detail, it
is comprised of an inner loop inside an outer loop of optimization. In the inner loop,
the classifier part is updated (fast weights, e.g., 0FLY for OML and §PCLF for ANML,
OFLNW for OMLA+AIM, and 07CLEW for ANMLA4AIM) (Lines 4-5). The number of weight
update iterations is determined by the number of given samples k (e.g., 10-30) of S,q;-.
Following the k sequential updates on a single meta-training class, the meta-loss in the
outer loop (Line 6) is computed by making predictions using the weights after the last
inner-loop weight update iteration using all the given samples on the single class (Syq;)
plus randomly sampling additional samples from the set of all the meta-training classes
(Srand)- All the weights of DNN are updated through outer-loop gradient updates based
on ADAM [85]. The learning rates, « for the inner loop and /5 for the outer loop, are used
as hyper-parameters.

After executing the meta-training phase on a server, in the meta-test phase, our system is
deployed on resource-constrained devices and evaluated on its ability to learn unseen classes.
Algorithm 5 shows the meta-testing phase of the rehearsal-based Meta CL. In conventional
Meta CL, the meta-test procedure contains only inner-loop optimization without outer-loop
optimization, i.e., only fast weights except for slow weights are fine-tuned. It is because
prior Meta CL methods do not adopt rehearsal techniques and often the feature extractor is
frozen during the meta-test phase. However, in our rehearsal-based Meta CL, we replicate
the meta-training procedure (i.e., inner-loop and outer-loop optimization) in the meta-test
procedure to utilize the inner-loop update for the fast adaptation of new classes and the
outer-loop update to prevent forgetting of previously learned classes. Thus, our proposed
meta-test process starts with the inner-loop weight updates to learn new classes swiftly
using a few samples (Lines 5-6), then followed by the outer-loop weight updates to retain
the knowledge on the previously learned classes using the replayed exemplars plus the new
samples (Line 8). Note that although the outer-loop iteration could run multiple epochs,

88

Algorithm 4: Meta-Training Procedure of MetaCLNet

Require: N sequential classes T; learning rates (LR) «, [3; inner-loop iterations k;
modules fy, ¢g

/* Perform an outer-loop using meta-learning */
1 fort=1,...,N do
Straj ~ 7;
Srcmd ~T
/* Perform an inner-loop */
fori=1,....,k do
Update fast weights using Siyq; > LR: «
/* OML (+AIM) :(bQPLN (fgw) , ANML (+AIM) :fgp, (b@CLF (fgw) , MetaCLNet (Ours): ¢9GLF
*/
Update slow weights using {Siq;, Srand} > LR: 8
/* OML (+AIM) :ngLN , ANML (+AIM): ngM./ f9P7¢GCLF , MetaCLNet (Qurs): faNJ\/I7f0P,¢QCLF
*/

the performance converges after one or two epochs (see §D.4.6 for details). In addition, to
reduce the memory overheads, our proposed compression technique for rehearsal samples
(BitPQ: the combination of the sparse bitmap compression and PQ) is performed on the
fly before and after the slow weight update (Lines 7, 9-10). Further details of rehearsal
techniques (§D.2.4) and the compression methods for rehearsal samples (§D.2.5 and §D.2.6)
are presented in the following subsections.

D.2.4 Rehearsal Techniques

We now describe two widely used rehearsal techniques: native rehearsal and latent replay.

Native Rehearsal. This is a rehearsal technique in which a random subset of the given
classes is stored as rehearsal samples to be replayed later to mitigate the forgetting issue.
The raw input data for the model are stored for rehearsal. For example, images are stored for
image datasets, and MFCC features are stored for an audio dataset. Storing and replaying
the raw input data is often adopted in many rehearsal-based CL methods [13, 31, 160].

Latent Replay. This approach is to store latent representations of a selected layer in
DNNs, instead of storing copies of raw input data. Note that typically in DNNs, layers
close to the input represent low-level feature extraction, and layers close to the classifier
represent class-specific discriminant features. In our network architecture, the activations
of the layer after the feature extractor and before the classifier are stored as rehearsal
samples. When the feature extractor is frozen, latent replay is functionally equivalent
to raw input replays. However, latent replay achieves computational saving since the
forward pass of the feature extractor can be omitted when replaying latent representations.

89

10
11
12
13

Algorithm 5: Meta-Testing Procedure of MetaCLNet

Require: N sequential unseen classes T; learning rates (LR) «, /3; inner-loop
iterations k; modules fy, @9, Bit PQcompresss BIEPQdecompress

Strain = {}, Srehearsal = {}

/* Perform an outer-loop using meta-learning x/
fort=1,....,N do

Straj ~ 7;

Strain - {Straina Straj}

/* Perform an inner-loop x/

fori=1,....k do

Update fast weights using Sy > LR: «
/* OML(+AIM) :pgrrin (fow), ANML(+AIM): for,pgorr(fow), MetaCLNet(Ours): oyerr
*/

// Get latent activations from compressed rehearsal samples

Slatent = Bitp@decompress(Srehearsal>

Update slow weights using {Siraj, Siatent } > LR: S

/* OML(+AIM): forn, ANML(+AIM): fynum, for, pgorr, MetaCLNet(Ours): ¢yorr x/

// Get latent activations

Slatent = fONM (Straj) © f9P<Straj)

// Store compressed latent activations for rehearsal

Srehearsal = {Srehearsab Bitp@compress(‘slatent)}
Stest = T — Strain // Held-out meta-test testing set
Evaluate on Si,qin // Eval on meta-test training set
Evaluate On.f%eﬁ // Eval on meta-test testing set

Also, the backward pass is performed until the latent layer for the latent representations.
Therefore, we adopt to use the latent replay as a rehearsal technique for MetaCLNet.

D.2.5 Sparse Bitmap Compression for Latent Replays

MetaCLNet achieves high accuracy in CL tasks. However, stored samples for rehearsal
cause storage and memory overheads while learning new classes. Therefore, we adopt two
compression techniques (sparse bitmap compression and PQ) to minimize the resource
overheads of storing samples for rehearsals. In this subsection, we first describe the sparse
bitmap compression.

Sparsity Observation. In DNN training, the activations for each layer are saved during
the forward pass so that those activations are utilized for computing the gradients during
the backward pass. As in [161], storing activations requires a large memory footprint
depending on the batch size used for training. However, commonly used ReLLU non-linearity

90

© o o =
B o o) o

Probability

o
N

0.0 00 05 10 15 20 25 3.0

Activations Values

Figure D.3: The histogram of activation values (latent representations) for the latent
layer of the model trained on the GSCv2 dataset (The same observation holds for the
other employed datasets). More than 90% of the activation values are zero, and thus the
proportion of non-zero values is very small due to the ReLLU non-linearity.

in many DNN models results in sparse activations in the successive layers. Also, we observe
that more than 90% of the activation values of the latent layer are zero due to the usage of
ReLU from our analysis of the network architecture on all three datasets (see Figure D.3).

Compression. To leverage this observation, we employ the sparse bitmap compression
proposed in [154] where zero values of the activations are filtered out, and only non-
zero values with corresponding indices are stored in 32-bit floats and the bitmap format,
respectively. This scheme enables our system to filter out the majority of zero values
(90% or more) and save the remaining non-zero values to increase the compression rate
for saving latent representations. Specifically, when latent representations that will be
stored as rehearsal samples are given to the system, the original latent representations
are compressed into non-zero values in their original format (32-bit) and a bitmap that
has the same dimensions as the latent representations and sets a bit to 1 for the indices
having the non-zero values and to 0 for the remaining indices with zero.

The sparse bitmap compression is performed during the replay process on-the-fly. As
illustrated in Figure D.2, when latent activations for a new class are given, we perform
the sparse bitmap compression on them and store non-zero values and the corresponding
bitmap. Then, during the replay process, we reconstruct the latent representations using
the stored non-zero values and the bitmap. Going through each element of the bitmap
(containing bits of 1 or 0) and a vector containing the stored non-zero values, we reconstruct
latent activations by putting the saved non-zero value if a bitmap element is 1 or putting
zero if a bitmap element is 0. The compression and decompression processes are linear in
runtime, i.e., O(n) where n is the total number of elements of latent activations. Also, the

91

memory footprint can be reduced from (4n) when a dense format is used for storing latent
activations to (4 x number of non-zero values + %n) when the bitmap format is used.

D.2.6 Product Quantization for Compressing Latent Replays

We now introduce PQ [11] and how it is used to further compress the latent representations
together with the sparse bitmap compression in our system. First of all, given a vector
z € R? where d is the dimension of the vector (e.g., a vector with only non-zero values
after the sparse bitmap compression in MetaCLNet), PQ attempts to store z as s number
of indices (integers) using as few bits as possible (typically 8-bit is used so that each
index can be stored with 1 byte). In detail, PQ partitions d-dimensional vector, z, into s
sub-vectors with the size of d/s. After that, suppose we are given a PQ codebook that
is partitioned into s columns and each column contains a set of representative vectors
that can well approximate sub-vectors of z, the given vector z can be approximated by s
sub-vectors using the representative vectors in the PQ codebook and its associated indices.
Then, with the codebook and s indices, we can reconstruct the given vector z. Note that a
codebook can be learned by running the standard k-means clustering on each partitioned
column independently based on all the given vectors [11].

In this work, we apply PQ to the compressed latent activations already filtered out by the
sparse bitmap compression and hence contain only non-zero values, as shown in Figure D.2.
To learn a PQ codebook, we use the compressed latent representations of the training data
of the meta-training phase so that the codebook contains representative vectors that could
well approximate compressed latent representations after the sparse bitmap compression.
For our experiments, we use 1 byte to store each PQ index (i.e., index can be ranged from
0 to 255 in this case) and set d/s = {128, 32,8} (d/s is the length of each sub-vector. It
can be considered the compression rate as a sub-vector of length d/s is compressed to a 1
byte integer in this case) (refer to §D.4.6 for more analysis).

D.2.7 Quantizing Neural Weights

Having established the effective compression schemes on stored latent representations, we
further optimize MetaCLNet by performing quantization on the DNN model itself. As
our network architecture is naturally divided into the feature extractor frozen during the
deployment and the classifier updated continually while learning new classes (as shown in
Figure D.2), we determined to quantize the feature extractor by converting its weights and
activations from 32-bit floats to 8-bit integers using the scalar quantization scheme [9, 111]
to minimize the information loss in quantization. We utilize an affine mapping of integer
q to real number r for constant quantization parameters S and Z, i.e., r = S(q — Z).
S denotes the scale of an arbitrary positive real number. Z denotes a zero-point of the
same type as quantized value q, corresponding to the real value 0. As a result, the

92

feature extractor of the deployed DNN is based on 8-bit integers, and its classifier is based
on 32-bit floats continually fine-tuned during deployment. Note that the neural weight
quantization significantly decreases the model size (smaller memory footprint for CL) and
makes inference faster (lower end-to-end training time for learning new classes continually).
Besides, our design choice of network architecture (quantizing and freezing the feature
extractor while updating the classifier) enables rapid on-device learning of new classes on
the fly as MetaCLNet can bypass the execution of the feature extractor during training and
only update the classifier with the compressed rehearsal samples, which is computationally
much lightweight than updating the whole networks.

D.3 Implementation

We now introduce the hardware and software implementation.

Hardware Platform. The meta-training stage of our system to initialize the neural
weights that can enable fast adaptation during deployment scenarios is implemented and
tested on a Linux server equipped with an Intel Xeon Gold 5218 CPU and NVIDIA
Quadro RTX 8000 GPU. The weights of DNN models based on ANML and AIM are
initialized through meta-learning in this stage. After that, in the deployment stage, we
deploy the pre-trained models (i.e., feature extractor and classifier) on two embedded
devices such as Jetson Nano and Pi 3B+. The first device, Jetson Nano, is equipped with
a quad-core ARM Cortex-A57 processor with 4 GB of RAM. The second device, Pi 3B+,
contains a quad-core ARM Cortex-A53 processor with 1 GB of RAM. Note that the free
memory space of Jetson Nano and Pi 3B+ during idle time is roughly 1.7 GB and 600 MB,
respectively, due to the memory footprints pre-occupied by background and concurrent
applications and operating systems.

Software Platform. We employ PyTorch 1.8 (Deep Learning Framework) and Faiss
(PQ Framework) to develop and evaluate the meta-training phase of MetaCLNet on the
Linux server. We implement MetaCLNet based on Python on the server and examine
the accuracy of the models in the CL setup. In addition, for the meta-testing phase
(i.e., actual deployment scenarios), MetaCLNet is deployed on embedded devices with
limited resources. Also, we quantize the weights/activations of the feature extractor (i.e.,
neuromodulatory network and prediction network) of our system from 32-bit floats to
8-bit integers. Then, we utilize the QNNPACK backend engine of PyTorch to execute
the quantized model on two embedded devices with ARMv8 microarchitecture. Only the
classifier is performed using 32-bit floats.

93

D.4 Evaluation

We now present the evaluation results of MetaCLNet. We first describe the experimental
setup (§D.4.1). We then show the effectiveness of our system by comparing it with
other baselines in terms of accuracy on CIFAR-100, MinilmageNet, and Google Speech
Commands V2 datasets (§D.4.2). After that, we analyze the memory footprint required
to operate various baselines and MetaCLNet (§D.4.3). In addition, we show the results
regarding end-to-end latency and energy consumption (§D.4.4). Finally, we conducted an
ablation study to identify the impact of each component of MetaCLNet (§D.4.5) and did
parameter analysis to study the effects of hyper-parameters such as the number of given
samples (§D.4.6) on the performance.

D.4.1 Experimental Setup
Evaluation Metrics

Within the meta-testing stage, there is the training phase where the DNN model learns new
classes and the testing phase where we evaluate the updated DNN, denoted as meta-test
training and meta-test testing, respectively. As discussed in [152], meta-test training
performance indicates the ability to memorize already seen samples of new classes. Then,
the meta-test testing performance measures the generalization ability for unseen samples
of new classes and is used as the key performance metric in our work. Moreover, we
report the memory footprint required to perform CL over multiple classes during the
meta-test phase, including memory space for model parameters, optimizers, activations,
and rehearsal samples. Also, we measure the end-to-end latency and energy consumption
to continually learn all the given classes to a deployed model on embedded devices.

Baselines
The following baseline systems are compared with our proposed system, MetaCLNet.

Oracle: The CL performance of Oracle represents the upper bound performance of the
experiments. It is because Oracle has access to all the classes at once in an i.i.d. fashion
and performs DNN training for many epochs until the performance converges.

Pretrained: This baseline initializes the model weights based on conventional DNN
training without the meta-learning procedure. Then, it finetunes the model weights using
given samples in the meta-test phase, similar to other Meta CL methods.

OML-+AIM [153]: OML+AIM is a Meta CL method based on OML with an Attentive
Independent Mechanisms (AIM) module that captures independent concepts to learn new
knowledge.

94

ANML [152]: ANML is the representative Meta CL method. As this method is often
reported to outperform OML, we only employ ANML in our evaluation. Also, note that
the proposed components of MetaCLNet build on top of ANML.

ANML+AIM [153]: ANML+AIM is a Meta CL method based on ANML with an AIM
module. This baseline serves as the SOTA Meta CL method as it often outperforms other
Meta CL methods including OML+AIM.

Datasets

We employ three datasets of two different data modalities in our evaluation.

CIFAR-100 [96]: Following [153], we employ CIFAR-100 in our evaluation as it is widely
used dataset. CIFAR-100 consists of 60,000 images of 100 classes. Each class has 500
train images and 100 test images. 70 classes are used for meta-training and the remaining
30 for meta-testing. During both meta-training and meta-testing, up to only 30 training
images are sampled for training in each class, which holds for both MinilmageNet and
GSCv2 datasets. Then, during meta-testing, a total of 900 samples are given to perform
CL, accounting for only 2.57% of all training samples.

MiniImageNet [155]: Following [153], we employ MinilmageNet which contains 64
classes for meta-training and 20 classes for meta-testing. Then, each class has 540 images
for training and 60 images for testing. During meta-testing, a total of 600 samples are
given to perform CL, taking up only 1.74% of all training samples.

GSCv2 [115]: To generalize our results to another data modality, we include Google
Speech Command V2 (GSCv2) as it is a widely used audio dataset. GSCv2 consists of
a total of 35 classes of different keywords. We use 25 classes for meta-training and 10
classes for meta-testing. Each class has 2,424 and 314 input data for training and testing,
respectively. During meta-testing, 300 samples in total are given for CL, accounting for
only 0.5% of all training samples.

Model Architecture

We follow the network architecture used in prior work [153] to allow for a fair comparison.
For ANML plus other systems based on ANML architecture, the neuromodulatory network
fonn and prediction network fyr are a 3-layer convolutional network with 112 and 256
channels, respectively. The classifier ¢pgcrr has a single fully-connected layer. ANML+AIM
adds AIM layers fyw after the feature extractor and before the classifier. For OML and
OML+AIM, the feature extractor fyren has a 6-layer convolutional network with 112
channels, followed by the classifier ¢pgry of two fully-connected layers with an AIM module
between the feature extractor and the classifier.

95

0.8 1.0
0.7
0.8
0.6
0.5
z 206 z0.
£ £ £
=04 = =
23 >3 “
< 3 <9
<03 <04 < 0.
0.2 SN = ————
== Oracle <O+ ANML 02| == Oracle * O+ ANML % 02| == Oracle 0« ANML m—=a
01| —= Premrained —— ANML+AIM —— Pretrained —— ANML+AIM —— Pretrained —— ANML+AIM
: %+ OML#AIM =0O— MetaCLNet %+ OML#AIM =0— MetaCLNet v+ OML+AIM —0— MetaCLNet
0055 10 15 20 25 30 00 5 10 15 20 005 4 6 8 10
Number of Classes Learned Number of Classes Learned Number of Classes Learned
(a) CIFAR-100 (b) MinilmageNet (c) GSCv2

Figure D.4: The meta-test testing accuracy of the CL systems on the three datasets of two
different modalities. Reported results are averaged over three trials, and standard-deviation
intervals are depicted.

Table D.2: The comparison of the required memory footprint and the compression ratio for
the baselines and our system to perform CL during the meta-test phase on three datasets.

Dataset Metrics Pretrained ANML OML+AIM ANML+AIM Oracle MetaCLNet
CIFAR-100 Memory 39.69MB 39.69MB 834.1MB 1,093MB 39.93MB 15.45MB
B Ratio 27.5% 27.5% 1.3x 1.0x 27.4x 70.8%
MinilmageNet Memory 474.5MB 474.5MB 1,051MB 1,562MB 475.0MB 136.7MB
48CNCL Ratio 3.3% 3.3% 1.5x 1.0x 3.3% 11.4x
GSCv2 Memory 10.16MB 10.16MB 135.2MB 608.2MB 10.20MB 3.40MB
v Ratio 59.9x 59.9x 4.5% 1.0x 59.6 % 178.7x%

Training Details

We follow the meta-learning procedure used in prior Meta CL works [151, 152, 153]. For
instance, we use the batch size of 1 for 20,000 steps. We experimented with different
learning rates for the inner loop and outer loop. For CIFAR-100 and GSCv2 datasets, the
inner-loop learning rate a of 0.001 and the outer-loop learning rate 8 of 0.001 show the
best meta-training test accuracy. For the MinilmageNet dataset, the inner-loop learning
rate o of 0.001 and the outer-loop learning rate 5 of 0.0005 shows the best meta-training
test accuracy. During the meta-test phase, ten different learning rates are tried for all
the methods. Also, different hyper-parameters for MetaCLNet (e.g., the number of given
samples, replay epochs, and sub-vector length of the PQ codebook) are evaluated. The
best performing results are reported in the following subsections.

96

D.4.2 Accuracy

We start by evaluating the CL performance (meta-test testing accuracy) of MetaCLNet
in comparison to the baselines on the employed datasets. During the meta-test phase,
all evaluated systems are given only 30 samples per class, accounting for 2.57%, 1.74%,
and 0.5% of all training samples during meta-training of CIFAR-100, MinilmageNet, and
GSCv2, respectively. Figure D.4 presents the accuracy results of meta-test testing to
analyze how well the baselines and our system can retain the knowledge of the previously
learned classes and generalize to unseen samples of new classes. To begin with, Pretrained
and Oracle serve as the performance lower bound and upper bound, respectively. The low
meta-test testing accuracy (24.4% on average for three datasets) of Pretrained demonstrates
that the conventional transfer learning approach cannot address the challenging scenarios
of learning new classes with only a few samples. Prior Meta CL method, ANML, improves
upon Pretrained. However, the improvement is marginal (i.e., average 9.9% accuracy
gain compared to Pretrained but 18.9% accuracy drop on average compared to Oracle).
Moreover, even the SOTA Meta CL methods, ANML+AIM (OML+AIM), also show
a substantial accuracy drop of 9.9% (13.4%) for CIFAR-100 and 10.7% (25.1%) for
MinilmageNet compared to Oracle. For GSCv2, ANML+AIM (OML+AIM) shows
impressive results whose meta-test testing accuracy is 71.0% (64.9%), very close to Oracle.

MetaCLNet achieves near optimal CL performance, falling short of only 2.8% accuracy
compared to Oracle (the upper bound of our experiments). Also, MetaCLNet outperforms
all the Meta CL methods with substantial accuracy gains of 4.1-16.1% on average for the
three datasets. Specifically, for CIFAR-100 and MinilmageNet datasets, MetaCLNet shows
almost no loss of accuracy (0.2% for CIFAR-100 and 2.7% for MinilmageNet) compared to
Oracle, while ANML+4AIM (SOTA Meta CL method) shows notable accuracy drops (9.9%
for CIFAR-100 and 10.7% for MinilmageNet). Then, for GSCv2, MetaCLNet reveals a
slight accuracy loss of 5.6% compared to Oracle, while ANML+AIM shows an impressive
result of only 0.2% accuracy loss compared to Oracle. Although MetaCLNet shows a
slightly higher accuracy loss than SOTA for GSCv2, our system is essentially designed for
edge devices to require drastically lower system resources (memory, training latency, and
energy) than SOTA. As we will explain in the following subsections, the excessive resource
overhead of SOTA makes it not suitable to operate on resource-constrained devices.

In addition, we observed that the meta-test training accuracy of the baselines and our
system is generally higher than the meta-test testing accuracy. This result indicates that
the CL systems can remember samples of new classes that they have just learned but
being generalizable to unseen samples of new classes is still challenging. To obtain the
accuracy results of systems that perform replays, we experimented with batch sizes of 8
and 16 and observed little difference in CL performance. Hence, we employ a batch size of
8 in our evaluation as a smaller batch size can reduce the required memory footprint.

97

Owverall, this result indicates that MetaCLNet can effectively learn new classes in a continual
manner based only on a few shots (30 samples per class) without experiencing catastrophic
forgetting, i.e., it generalizes well to new samples of many classes unseen during the
meta-train phase.

D.4.3 Memory Footprint

We now investigate the memory footprint required to perform CL over many unseen
classes during the meta-test phase. Precisely, we measure the memory space required
to perform training, i.e., backpropagation and replayed rehearsal samples. The memory
requirement for training consists of three components: (1) model memory that stores
model parameters, (2) optimizer memory that stores gradients and momentum vectors,
and (3) activation memory that is comprised of the intermediate activations (stored for
reuse during backpropagation). In addition, the memory requirement for rehearsal samples
is included for a rehearsal-based Meta CL system, MetaCLNet.

Table D.2 shows the overall memory footprint for various baselines and our system
to perform CL during the meta-test phase. First, the AIM variants (OML+AIM and
ANML+AIM) require an enormous overall memory footprint of 135.2-1,051 MB and
608.2-1,562 MB, respectively, as their AIM module has a large number of parameters.
This large required memory easily exceeds the RAM size of embedded devices such as
Pi 3B+ (i.e., 1 GB) and barely fits on the device even with 1.7 GB of available memory
space (e.g., Jetson Nano). On the other hand, other baseline systems such as Pretrained,
ANML, and Oracle show modest memory requirements, which are around 10.16-10.20
MB for GSCv2, 39.7-39.9 MB for CIFAR-100, and 474.5-475.0 MB for MinilmageNet.
However, as shown earlier, Pretrained and ANML methods are not highly accurate, and
Oracle does not support continual learning. In contrast, MetaCLNet shows the impressive
results that it only requires 3.40 MB for GSCv2, 15.45 MB for CIFAR-100, and 136.7 MB
for MinilmageNet, demonstrating a very high compression rate of 178.7x, 70.8x, and
11.4x compared to ANML~+AIM, respectively.

In summary, our results indicate that MetaCLNet has a very low memory footprint compared
to existing works and enables performing CL on resource-constrained embedded devices.

D.4.4 End-to-end Latency & Energy Consumption

In this subsection, we examine run-time system efficiency regarding runtime latency
and energy consumption of our system and the baselines during the deployment on two
embedded devices such as Jetson Nano and Pi 3B+. Specifically, we measure the end-tn-
end latency and overall energy consumption of the device to conduct CL over all the given
classes during the meta-test phase on two embedded devices. To obtain the end-to-end
latency, we include the time to load a pretrained model, the time to train the model

98

continually over the given classes, and the time to compress and decompress the latent
representations using our proposed compression method (i.e., sparse bitmap compression
and PQ). Figure D.5 shows end-to-end latency and energy consumption results.

Latency. First, we measure the end-to-end latency of our system and the baselines on
Jetson Nano to perform CL over all the given classes with 30 samples per class. As
shown in Figures D.5a, D.5c, and D.5e, MetaCLNet enables a fast end-to-end latency
(415 seconds for CIFAR-100, 1373 seconds for MinilmageNet, and 84 seconds for GSCv2),
which is 80.8-94.2% reduction of latency compared to ANML+AIM (e.g., 7,100 seconds
for CIFAR-100 and 438 seconds for GSCv2). Note that ANML+AIM cannot run on
Jetson Nano due to its excessive memory requirements. Furthermore, when MetaCLNet is
compared to ANML which shares the same network architecture, MetaCLNet introduces
negligible overheads in terms of the overall latency (343s vs. 415s for CIFAR-100, 1,280s
vs. 1,373s for MinilmageNet, and 79s vs. 84s for GSCv2). It is because although there
exist some overheads on MetaCLNet to perform the compression techniques like the sparse
bitmap compression and PQ), the speed gains derived from using quantized neural weights
and activations offset the overheads of compression techniques (see §D.4.5 for more details).
After having demonstrated the efficiency of MetaCLNet on the Jetson Nano, we deployed
our system on an even more resource-constrained device, Pi 3B+, with only 600-700
available memory space out of 1 GB of RAM. The end-to-end latency on Pi 3B+ largely
stays similar to that on Jetson Nano as shown in Figure D.5.

Energy Consumption. We measure the energy consumption of the end-to-end CL
over multiple classes of our system and the baselines on Jetson Nano and Pi 3B+ as
shown in Figures D.5b, D.5d, and D.5f. We use Tegrastats on Jetson Nano to measure
the power consumption with which we calculate the energy consumption by multiplying
power consumption and the elapsed time for each end-to-end CL trial. Likewise to the
latency results, compared to ANML+AIM, MetaCLNet remarkably reduces the energy
consumption by 80.9-94.2% (1.9kJ vs. 32.7kJ for CIFAR-100 and 0.4kJ vs. 2.0kJ for
GSCv2). Moreover, compared to ANML, MetaCLNet shows small overheads of the
additional energy consumption (1.6kJ vs. 1.9kJ for CIFAR-100, 5.9kJ vs. 6.3kJ for
MinilmageNet, and 0.36kJ vs. 0.39kJ for GSCv2). In the case of Pi 3B+, it consistently
consumes less energy than Jetson Nano. It is because while the end-to-end latency of the
two embedded devices is similar, the power consumption profile on Pi 3B+ is lower than
that on Jetson Nano, making Pi 3B+ a more energy-efficient option. A YOTINO USB
power meter is used to obtain the power consumption on Pi 3B+.

To summarize, our results demonstrate that MetaCLNet enables fast (low latency) and
efficient (low energy consumption) CL on edge devices.

99

7,100

7000 3
s
2

A(!DDO :30
)]
= P

£ 5000 e
2 £
2 El

= 4000 22
- =
z S

2 3000 15
] &

3 3 10
2000 g
=

1000 5

Oracle Pretrained OML+AIM _ ANML ANML+AIM LifeLeaer LifeLearner 0™ Oracle Pretrained OML+AIM _ANML ANML+AIM LifeLearner LifeLearner
(Nano) (Pi3B+) (Nano) (Pi3B+)
(a) Latency (CIFAR-100) (b) Energy (CIFAR-100)

4000| 3,793 20
—~
=<
<
I =

S 3000 25
I} =
2 £
t3 El
= 2

2000 S 10
s Q
& >
< 133

1000 Es

0 0

Oracle Pretrained OML+AIM ~ ANML ANML+AIM LifeLearner LifeLearner Oracle Pretrained OML+AIM ~ ANML ANML+AIM LifeLearner LifeLearner
(Nano) (Pi3B+) (Nano) (Pi3B+)
(c) Latency (MinilmageNet) (d) Energy (MinilmageNet)

w IS

Latency (seconds)
N

Energy Consumption (kJ)

Oracle Pretrained OML+AIM ~ ANML ANML+AIM LifeLearner LifeLearner Oracle Pretrained OML+AIM ~ ANML ANML+AIM LifeLearner LifeLearner

(Nano) (Pi3B+) (Nano) (Pi3B+)

(e) Latency (GSCv2) (f) Energy (GSCv2)
[Oracle SN OML+AIM ESN ANML+AIM 4 LifeLearner (Pi3B+)
B2 Pretrained A ANML =X LifeLearner (Nano)

Figure D.5: The end-to-end latency and energy consumption of the baselines and Meta-
CLNet to perform CL over all the given classes during the meta-test phase on three
datasets. All results are averaged over three runs with standard deviations.

D.4.5 Ablation Study

To investigate the role of each component of our CL system (MetaCLNet) in the perfor-
mance and system efficiency, we perform an ablation study on the proposed components:

100

Table D.3: The comparison of the MetaCLNet and other variants of rehearsal-based Meta
CL methods during the meta-test phase for the ablation study.

Dataset System Accuracy Memory Latency Energy
ANML 0.272 39.69 MB 343.2s 1.58kJ
Raw 0.392 110.5 MB 12,693s 58.39kJ
Latent 0.452 53.9 MB 432.5s 1.99kJ
CIFAR-100 Latent+Bit 0.452 41.2 MB 466.9s 2.15kJ
Latent+PQ 0.448 41.8 MB 437.1s 2.01kJ
Latent+Bit+PQ 0.455 40.4 MB 471.4s 2.17kJ
MetaCLNet 0.443 15.5 MB 414.7s 1.91kJ
ANML 0.327 474.5 MB 1,280s 5.89kJ
Raw 0.429 897.1 MB 206,234s 948.67kJ
Latent 0.433 512.5 MB 1,492s 6.86kJ
MinilmageNet Latent+Bit 0.433 A77.7 MB 1,551s 7.14kJ
Latent+PQ 0.443 483.0 MB 1,501s 6.90kJ
Latent+Bit+PQ 0.436 476.4 MB 1,560s 7.18kJ
MetaCLNet 0.411 136.7 MB 1,373s 6.32kJ
ANML 0.429 10.2 MB 78.6s 0.36kJ
Raw 0.135 50.8 MB 1,627s 3.74kJ
Latent 0.713 12.0 MB 90.6s 0.42kJ
GSCv2 Latent+Bit 0.713 10.4 MB 90.8s 0.42kJ
Latent+PQ 0.708 11.0 MB 95.0s 0.44kJ
Latent+Bit+PQ 0.708 10.3 MB 95.2s 0.44kJ
MetaCLNet 0.656 3.40 MB 83.8s 0.39kJ

(1) rehearsal techniques, (2) sparse bitmap compression, (3) PQ, and (4) quantization.
Based on these components, we formulate various rehearsal-based Meta CL systems that
incrementally contain the proposed components one by one. The list of the CL systems
that build on top of ANML is as follows.

Raw: The raw inputs of the given samples are stored and replayed when a deployed model
learns new classes. Also, the neuromodulatory layers are frozen during deployment.

Latent: The latent representations of the given samples are saved and replayed later when
a deployed model encounters new classes. The feature extractor (i.e., neuromodulatory

and prediction networks) except for the classifier is frozen during deployment.

Latent+Bit: This CL system builds on top of Latent and applies the sparse bitmap

101

ZZ2 MetaCLNet (S =10) Oracle (S=10)
10— gzA MetaCLNet (5=20) &SI Oracle (S = 20)
BN MctaCLNet (S=30) @2 Oracle (S=30)

0.52

Accuracy

SOOI 0:35
\NANNANNANNANNY

0.0 0
(MinilmageNet

Dataset

(a) Number of Samples per Class (S) (b) Number of Replay Epochs (&)

NN,
GSCv2

%

SIS

a

Accuracy

0.0

ZZ1 MetaCLNet (€ =1) Oracle (£=1)
MetaCLNet (€=2) ESB Oracle

QORBEBLL 0.4
SERXIERKIRA_0-

X

o2

Dataset

MinilmageNet GSCv2

Accuracy

MetaCLNet (€ =128) BBE MetaCLNet (£ =8)

MetaCLNet (£ = 32)

W2 Oracle

0.71

0.66

0.63

0.61

042
044
0.44
0.4

Z
g
/
g
7
“IFAR-100

ANNANAAANANNNNNW

?,
/
7
/

a

Dataset

(¢) Sub-Vector Length (L)

Figure D.6: The parameter analysis of MetaCLNet for all the datasets according to the

three parameters.

compression to the latent representations. We include Latent+Bit to perform an ablation
study with and without the sparse bitmap compression.

Latent+PQ: This CL system builds on top of Latent and applies the PQ to the latent
representations. We include Latent+P(Q to perform an ablation study with and without

PQ.

Latent+Bit+PQ: This CL system builds on top of Latent+Bit and applies PQ on
the compressed latent representations that are sifted out through the sparse bitmap
compression. We include Latent+Bit+PQ to evaluate the combined effect of the sparse

bitmap compression and PQ.

Latent+Bit+PQ+Int8 (MetaCLNet): This is our final CL system that contains all
the components proposed in this work for the system optimization. MetaCLNetis based on
Latent+Bit+PQ and further quantizes the neural weights and activations of the feature
extractor into 8-bit integers, allowing us to evaluate the impact of 8-bit quantization.

Table D.3 summarizes the ablation study results regarding the accuracy, memory footprint,
end-to-end latency, and energy consumption during the meta-test phase of on-device
deployment. First of all, we find that the combination of rehearsal techniques with ANML
drastically improves the accuracy. For example, Latent increases the accuracy of ANML
by 10.6-28.4% across all the datasets with some overheads on system resources (memory,
latency, and energy). Although Raw improves accuracy compared to ANML for the
CIFAR-100 and MinilmageNet datasets, Raw fails to generalize to another data modality,
showing very low accuracy for GSCv2. In addition, Raw requires the most amount of
memory, latency, and energy among all the CL systems in the ablation study. Latent
causes a modest amount of additional memory, latency, and energy compared to ANML.

102

These results demonstrate the effectiveness of incorporating the rehearsal strategy to Meta
CL and show that latent replays can be a better design choice over native rehearsal, and
hence we adopt to use of the latent replay in our system, MetaCLNet. In addition, the
results of various CL systems such as Latent+Bit, Latent+PQ, and Latent+Bit+PQ show
that our proposed compression techniques for latent representations do not sacrifice the
accuracy of the CL systems and reduce the overall memory footprint compared to Latent.
They only incur small resource overheads in terms of latency and energy. Then, our
final CL system, MetaCLNet, demonstrates the excellent performance in all aspects: (1)
outperforms ANML by a large margin (8.4-22.7%) with a minor accuracy drop compared
to Latent (0.9-5.7%), (2) drastically reduces the memory footprint by 61.0-71.2% compared
to ANML and by 71.2-73.3% compared to Latent, and (3) incurs only minimal overheads
of end-to-end latency and energy compared to ANML (i.e., costs additional 56.6s and 0.3kJ
on average, respectively) but still shows lower latency and energy consumption compared
to Latent (saves 47.9s and 0.2kJ on average, respectively).

Overall, the ablation study reveals that each proposed component is equally important in
making our final CL system more accurate and efficient (lower memory, latency, and
energy consumption).

D.4.6 Parameter Analysis

Finally, we study the impact of the various hyper-parameters that could affect the
performance of our system as shown in Figure D.6. Hence, in this subsection, we choose
three parameters to further analysis, namely, (1) the number of the given samples per
class, (2) the number of replay epochs, and (3) the sub-vector length of the PQ codebook.

First, Figure D.6a shows the accuracy of MetaCLNet according to the number of the given
samples per class ranging from 10 to 30. MetaCLNet shows the lowest accuracy when
only 10 samples per class are given to conduct training. Apparently, the more samples
are given for training, the higher the accuracy, which holds for both MetaCLNet and
Oracle. Interestingly, the accuracy differences between MetaCLNet and Oracle are small
(e.g., 1-2% for CIFAR-100, 1-3% for MinilmageNet, and 5-9% for GSCv2), demonstrating
that MetaCLNet still achieves the similar accuracy of Oracle. With 30 given samples, the
accuracy difference is minimal: 2.8% on average, and ranging from 1 to 5%.

Secondly, Figure D.6b shows the accuracy of MetaCLNet according to the number of the
replay epochs ranging from 1 to 5. The results of MetaCLNet show that the accuracy
converges after the first or the second replay epoch. However, Oracle requires at least two
to five epochs to reach the convergence accuracy, which consumes much more latency than
our system (see §D.4.4). This result benefits us since replaying the rehearsal samples over
one or two epochs is enough for MetaCLNet to reach the converging accuracy, which helps
decrease the system overheads such as training latency and energy consumption.

103

Third, Figure D.6¢c shows the accuracy of MetaCLNet according to the sub-vector length
of the PQ codebook (the number of values per index, i.e., compression ratio) ranging from
8 to 128. For CIFAR-100 and MinilmageNet, there is little difference according to the
sub-vector length. In contrast, for GSCv2, we observe that the shorter the length of the
sub-vector (i.e., the smaller number of values are compressed per index), the higher the
accuracy during the meta-test phase.

In summary, these results show that with only 10-30 samples per class, MetaCLNet can
still achieve similar CL performance to Oracle, exhibit rapid convergence with small replay
epochs (at most two), and accomplish a high compression rate for latent representations.

D.5 Related Work

In this section, we review relevant prior studies regarding (1) continual learning, (2)
compression techniques for DNN inference and training, and (3) mobile and embedded
sensing applications.

Continual Learning. Continual Learning (CL) efforts have also been referred to as lifelong
learning [3], incremental learning [13], and sequential learning [27]. Various approaches
attempt to solve the typical catastrophic forgetting problem of CL [27, 39, 159]. The
first group of approaches includes regularization-based methods [29, 36, 37]: these add a
regularization term to the loss function to minimize changes to important weights of a model
for previously learned classes to prevent forgetting. The second group of approaches includes
the dynamic architecture-based methods [149, 30, 150] that dynamically expand and freeze
DNN architectures to incorporate new classes and prevent forgetting. The last group
of approaches among conventional CL includes rehearsal-based methods [13, 31, 14, 65].
These prevent forgetting by replaying the saved rehearsal samples from earlier classes.

In recent years, a new group of approaches, as mentioned in the previous sections, Meta
CL [151, 152, 153], has been proposed to resolve the limitations of conventional CL methods.
However, Meta CL also suffers from low CL performance and high resource overheads, as
described in Section D.2. In this work, we have proposed a novel rehearsal-based Meta CL
that achieves high CL performance with low resource overheads instead. As mentioned,
MetaCLNet, can be deployed on resource-constrained IoT devices where it is not feasible
to run SOTA Meta CL due to its excessive memory requirements.

Compression Techniques for DNN Inference and Training. Researchers have
focused on enabling accurate yet efficient DNN inference by compressing the model [162].
As a result, many of the hand-crafted network architecture were proposed such as
SqueezeNets [134], ShuffleNets [108], and MobileNets [107]. However, to make a fair
comparison with prior Meta CL methods, we employ the network architecture used in
prior works [151, 152, 153] instead of searching for more efficient network architectures.

104

Besides, many works on pruning and quantization utilize the inherent redundancy in
weights and activations of DNNs [79, 137, 9, 111, 142]. In this work, we employ the widely
used quantization technique based on 8-bit quantization [9, 111] for optimizing our CL
system.

Another thread of research is focused on reducing the overall system resources required for
DNN training [163, 161]. These methods can be generally categorized into thee directions:
optimization of the model layer growth, the activation layer sparsity, and last layer fine-
tuning. For example, researchers control the layerwise growth of the model structure to
enable efficient DNN model execution on mobile phones [164]. Second, other methods
focus on optimizing network activation sparsity to avoid redundant model weights during
DNN training [154, 165]. Third, another work proposed fine-tuning the last layer to
enable efficient DNN training in the wild with new datasets [166]. Moreover, as another
technique to compress a vector (e.g., features, weights, and activations of DNNs), product
quantization (PQ) [11, 101, 102, 14] has been widely adopted in the database and ML
areas. Some works use PQ to compress weights and activations of DNNs and rehearsal
samples to perform CL. Inspired by those works, we propose MetaCLNet by incorporating
various compression techniques such as the sparse bitmap compression [154] and PQ [11]
to further compress the latent representations in our novel rehearsal-based Meta CL for
the first time.

Mobile and Embedded Sensing Applications. With the rise of deep learning,
increasing number of mobile and embedded systems adopt DNN models. It is also because
DNN models have demonstrated state-of-the-art performances in many real-world mobile
and embedded sensing applications, namely, computer vision [93, 167], audio sensing [45],
and many other applications [58, 63]. For instance, image classification is extensively
studied, and its datasets [96, 155, 113, 114] are widely used in many fields including
transfer learning [168], meta-learning [156], self-supervised learning [169], and federated
learning [170]. Moreover, many researchers have investigated using DNN for audio sensing
tasks such as keyword spotting [90], emotion recognition [6], speaker identification [50],
and environmental sound classification [84]. In this work, we adopt image classification and
keyword spotting as our sensing applications for a case study because image classification
is widely used in the prior SOTA Meta CL work [153], and keyword spotting is one of the
representative audio sensing applications on edge devices [171].

D.6 Discussion
Impact on Continual Learning. MetaCLNet is the first framework that allows CL
on resource-constrained edge devices and combines meta-learning with rehearsal-based

strategies to learn new classes incrementally using a small number of labeled data while
maintaining high performance and preventing forgetting, which is quintessential for any

105

CL system. Previous efforts in Meta CL either suffer from low accuracy [152, 151] or are
not suitable for deployment on edge devices due to their excessive resource overheads [153].
Thus, we envision that MetaCLNet could make CL a practical reality on embedded devices.
Such CL systems will allow DNN models to add new classes (e.g., adding new objects to
an image recognition system, adding new keywords to a voice assistant) or new modalities
(e.g., adding image recognition on top of a voice recognition authentication system) on
the fly that can help us move one inch closer to the idea of general artificial intelligence.
We leave the wider deployment and performance evaluation of MetaCLNet on other more
resource-constrained embedded platforms as our future work. In this context, optimizing
MetaCLNet to utilize much stricter weight quantization such as 1, 2, or 4 bits will be
worth pursuing.

Generalizability of MetaCLNet. We have demonstrated that MetaCLNet successfully
works on three different datasets operating on two different modalities: image and audio,
showing the generalizability of our framework. The evaluation of other datasets and
potentially other modalities, including IMU data to further test the applicability of
MetaCLNet for learning continually for other real-world applications, is left as future work.

D.7 Conclusions

We have proposed a novel rehearsal-based Meta CL system, MetaCLNet, that achieves
very high accuracy by combining the realms of Meta CL and rehearsal-based learning. It
also enables highly efficient end-to-end CL for edge devices by utilizing various compression
techniques on rehearsal samples and neural weights/activations to reduce the system
overheads. As a result, MetaCLNet outperforms the prior SOTA Meta CL method by
a large margin (approximating the upper bound method that performs training in i.i.d.
setting) and demonstrates its potential applicability in real-world deployments.

106

Bibliography

1]

Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury,
and Andrew T. Campbell. A survey of mobile phone sensing. I[EEE Communications
Magazine, 48(9):140-150, September 2010.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L. Hayes, and Christopher
Kanan. Measuring catastrophic forgetting in neural networks. In Thirty-second
AAAI conference on artificial intelligence, 2018.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan

Wermter. Continual lifelong learning with neural networks: A review. Neural
Networks, 113:54-71, May 2019.

Andreas Bulling, Ulf Blanke, and Bernt Schiele. A Tutorial on Human Activity
Recognition Using Body-worn Inertial Sensors. ACM Comput. Surv., 46(3):33:1—
33:33, January 2014.

Xiaolong Zhai, Beth Jelfs, Rosa H. M. Chan, and Chung Tin. Self-Recalibrating Sur-
face EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional
Neural Network. Frontiers in Neuroscience, 11, 2017.

Kiran K. Rachuri, Mirco Musolesi, Cecilia Mascolo, Peter J. Rentfrow, Chris Long-
worth, and Andrius Aucinas. EmotionSense: a mobile phones based adaptive

platform for experimental social psychology research. In Proc. UbiComp, pages
281-290, September 2010.

Young D Kwon, Jagmohan Chauhan, Abhishek Kumar, Pan Hui, and Cecilia Mascolo.
Exploring System Performance of Continual Learning for Mobile and Embedded
Sensing Applications. In ACM/IEEE Symposium on Edge Computing. Association
for Computing Machinery (ACM), 2021.

Young D. Kwon, Jagmohan Chauhan, and Cecilia Mascolo. FastICARL: Fast
Incremental Classifier and Representation Learning with Efficient Budget Allocation
in Audio Sensing Applications. In Proc. Interspeech 2021, pages 356-360, 2021.

107

[9]

[10]

[13]

[14]

[15]

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-
drew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and Train-

ing of Neural Networks for Efficient Integer-Arithmetic-Only Inference. volume
abs/1712.05877, 2017.

Xiaoxi He, Zimu Zhou, and Lothar Thiele. Multi-task zipping via layer-wise neuron
sharing. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

H. Jégou, M. Douze, and C. Schmid. Product Quantization for Nearest Neighbor
Search. IEEFE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117-
128, January 2011.

Young D. Kwon, Jagmohan Chauhan, and Cecilia Mascolo. YONO: Modeling Mul-
tiple Heterogeneous Neural Networks on Microcontrollers. In 2022 21st ACM/IEEE

International Conference on Information Processing in Sensor Networks (IPSN),
pages 285297, 2022.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H
Lampert. icarl: Incremental classifier and representation learning. In Proc. C'VPR,
pages 2001-2010, 2017.

Tyler L. Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher
Kanan. REMIND Your Neural Network to Prevent Catastrophic Forgetting. In
Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors,
Computer Vision — ECCV 2020, Lecture Notes in Computer Science, pages 466-483,
Cham, 2020. Springer International Publishing.

Anish Das, Young D. Kwon, Jagmohan Chauhan, and Cecilia Mascolo. Enabling
On-Device Smartphone GPU based Training: Lessons Learned. In 2022 IEEFFE
International Conference on Pervasive Computing and Communications Workshops
and other Affiliated Events (PerCom Workshops), pages 533-538, 2022.

Jagmohan Chauhan, Young D. Kwon, and Cecilia Mascolo. Exploring On-Device
Learning Using Few Shots for Audio Classification. In 2022 30th European Signal
Processing Conference (EUSIPCO), pages 424-428, 2022.

Nhat Pham, Hong Jia, Minh Tran, Tuan Dinh, Nam Bui, Young Kwon, Dong Ma,
Phuc Nguyen, Cecilia Mascolo, and Tam Vu. PROS: An Efficient Pattern-Driven
Compressive Sensing Framework for Low-Power Biopotential-Based Wearables with
on-Chip Intelligence. In Proceedings of the 28th Annual International Conference on
Mobile Computing And Networking, MobiCom 22, page 661-675, New York, NY,
USA, 2022. Association for Computing Machinery.

108

[18]
[19]

[20]

23]

[24]

[26]

[27]

Young D. Kwon. Efficient Meta Continual Learning on the Edge. 2021.

Young D. Kwon, Jagmohan Chauhan, Hong Jia, Stylianos I. Venieris, and Cecilia
Mascolo. LifeLearner: Hardware-Aware Meta Continual Learning System for Embed-
ded Computing Platforms. In Proceedings of the 21st ACM Conference on Embedded
Networked Sensor Systems, SenSys 23, page 138151, New York, NY, USA, 2024.
Association for Computing Machinery.

Hong Jia, Young D. Kwon, Dong Mat, Nhat Pham, Lorena Qendro, Tam Vu, and
Cecilia Mascolo. UR2M: Uncertainty and Resource-Aware Event Detection on
Microcontrollers. In 2024 IEEE International Conference on Pervasive Computing
and Communications (PerCom), pages 1-10, 2024.

Young D. Kwon. On-device Training at the Extreme Edge. 2023.

Young D. Kwon, Rui Li, Stylianos Venieris, Jagmohan Chauhan, Nicholas Donald
Lane, and Cecilia Mascolo. TinyTrain: Resource-Aware Task-Adaptive Sparse
Training of DNNs at the Data-Scarce Edge. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pages 25812-25843. PMLR, 21-27 Jul 2024.

Yu Guan and Thomas Plotz. Ensembles of Deep LSTM Learners for Activity
Recognition Using Wearables. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., 1(2):11:1-11:28, June 2017.

Hong Lu, Denise Frauendorfer, Mashfiqui Rabbi, Marianne Schmid Mast, Gokul T.
Chittaranjan, Andrew T. Campbell, Daniel Gatica-Perez, and Tanzeem Choud-
hury. StressSense: Detecting Stress in Unconstrained Acoustic Environments Using
Smartphones. In Proc. UbiComp, pages 351-360, 2012.

Junjun Fan, Xiangmin Fan, Feng Tian, Yang Li, Zitao Liu, Wei Sun, and Hongan
Wang. What is That in Your Hand?: Recognizing Grasped Objects via Forearm
Electromyography Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
2(4):161:1-161:24, December 2018.

Yifei Jiang, Xin Pan, Kun Li, Qin Lv, Robert P. Dick, Michael Hannigan, and
Li Shang. ARIEL: Automatic Wi-fi Based Room Fingerprinting for Indoor Local-
ization. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
UbiComp 12, pages 441-450, 2012.

Michael McCloskey and Neal J. Cohen. Catastrophic Interference in Connection-
ist Networks: The Sequential Learning Problem. In Psychology of Learning and
Motivation, volume 24, pages 109-165. January 1989.

109

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[38]

[39]

Z. Li and D. Hoiem. Learning without Forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2935-2947, December 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. Overcoming catastrophic forgetting in neural networks. Proc. National
Academy of Sciences, 114(13):3521-3526, March 2017.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong Learning
with Dynamically Expandable Networks. February 2018.

David Lopez-Paz and Marc\textquotesingle Aurelio Ranzato. Gradient Episodic
Memory for Continual Learning. In Proc. NIPS, pages 6467-6476. 2017.

B. Pfiilb and A. Gepperth. A comprehensive, application-oriented study of catas-
trophic forgetting in DNNs. In ICLR, 2019.

Monika Schak and Alexander Gepperth. A study on catastrophic forgetting in deep
LSTM networks. page 14.

Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schliiter, Shuo-Yiin Chang, and
Tara Sainath. Deep Learning for Audio Signal Processing. IFEE Journal of Selected
Topics in Signal Processing, 13(2):206-219, May 2019.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang.
Overcoming Catastrophic Forgetting by Incremental Moment Matching. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 4652—4662.
2017.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual Learning Through
Synaptic Intelligence. In Proc. ICML, pages 3987-3995, 2017.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress:
A scalable framework for continual learning. In International Conference on Machine
Learning, pages 4535-4544, 2018.

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735-1780, November 1997.

James L. McClelland, Bruce L. McNaughton, and Randall C. O’Reilly. Why there
are complementary learning systems in the hippocampus and neocortex: Insights
from the successes and failures of connectionist models of learning and memory.
Psychological Review, 102(3):419-457, 1995.

110

[40]

[41]

[42]

[49]

Sandra Servia-Rodriguez, Cecilia Mascolo, and Young D. Kwon. Knowing when
we do not know: Bayesian continual learning for sensing-based analysis tasks.
arXiw:2106.05872 [cs], June 2021.

Saurav Jha, Martin Schiemer, Franco Zambonelli, and Juan Ye. Continual learning
in sensor-based human activity recognition: An empirical benchmark analysis.
Information Sciences, 575:1-21, October 2021.

Nils Y. Hammerla, Shane Halloran, and Thomas Plotz. Deep, Convolutional, and
Recurrent Models for Human Activity Recognition Using Wearables. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI'16,
pages 1533-1540, 2016.

Henry Friday Nweke, Ying Wah Teh, Mohammed Ali Al-garadi, and Uzoma Rita
Alo. Deep learning algorithms for human activity recognition using mobile and
wearable sensor networks: State of the art and research challenges. Ezpert Systems
with Applications, 105:233-261, September 2018.

Angkoon Phinyomark and Erik Scheme. EMG Pattern Recognition in the Era of Big
Data and Deep Learning. Big Data and Cognitive Computing, 2(3):21, September
2018.

Nicholas D. Lane, Petko Georgiev, and Lorena Qendro. DeepEar: Robust Smartphone
Audio Sensing in Unconstrained Acoustic Environments Using Deep Learning. In
Proc. UbiComp, pages 283-294, 2015.

Francisco Javier Ordonez and Daniel Roggen. Deep Convolutional and LSTM
Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Sensors,
16(1):115, January 2016.

Vincent Becker, Pietro Oldrati, Liliana Barrios, and Gabor Sords. Touchsense:
Classifying Finger Touches and Measuring Their Force with an Electromyography
Armband. In Proceedings of the 2018 ACM International Symposium on Wearable
Computers, ISWC 18, pages 1-8, 2018.

Young D. Kwon, Kirill A. Shatilov, Lik-Hang Lee, Serkan Kumyol, Kit-Yung Lam,
Yui-Pan Yau, and Pan Hui. MyoKey: Surface Electromyography and Inertial
Motion Sensing-based Text Entry in AR. In 2020 IEEE International Conference on

Pervasive Computing and Communications Workshops (PerCom Workshops), pages
1-4, March 2020.

Kirill A. Shatilov, Dimitris Chatzopoulos, Alex Wong Tat Hang, and Pan Hui. Using
Deep Learning and Mobile Offloading to Control a 3d-printed Prosthetic Hand. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., 3(3):102:1-102:19, September
2019.

111

[50]

[51]

[59]

Sourav Bhattacharya and Nicholas D Lane. Sparsification and separation of deep
learning layers for constrained resource inference on wearables. In Proceedings of
the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, pages
176-189, 2016.

Petko Georgiev, Sourav Bhattacharya, Nicholas D. Lane, and Cecilia Mascolo. Low-
resource Multi-task Audio Sensing for Mobile and Embedded Devices via Shared
Deep Neural Network Representations. Proc. IMWUT, 1(3):50:1-50:19, September
2017.

Guoguo Chen, Carolina Parada, and Georg Heigold. Small-footprint keyword spotting
using deep neural networks. In 2014 IEEFE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4087-4091. IEEE, 2014.

Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning.
arXiw:1904.07734 [cs, stat], April 2019.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th
Annual International Conference on Machine Learning, ICML 09, pages 1121-1128,
Montreal, Quebec, Canada, June 2009.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & Compress:
A scalable framework for continual learning. In Proc. ICML, pages 4528-4537, July
2018.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv:1207.0580 [cs], July 2012.

Gary King and Langche Zeng. Logistic Regression in Rare Events Data. Political
Analysis, 9(2):137-163, 2001.

Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel Baun
Kj\a ergaard, Anind Dey, Tobias Sonne, and Mads Mgller Jensen. Smart Devices
Are Different: Assessing and MitigatingMobile Sensing Heterogeneities for Activity
Recognition. In Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’15, pages 127-140, 2015.

A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity
Monitoring. In 2012 16th International Symposium on Wearable Computers, pages
108-109, June 2012.

112

[60]

[61]

[69]

[70]

Thomas Stiefmeier, Daniel Roggen, Georg Ogris, Paul Lukowicz, and Gerhard Troster.
Wearable Activity Tracking in Car Manufacturing. IEEFE Pervasive Computing,
7(2):42-50, April 2008.

Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher.
DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensing
Data Processing. In Proceedings of the 26th International Conference on World
Wide Web, WWW ’17, pages 351-360, Republic and Canton of Geneva, Switzerland,
2017.

Harish Haresamudram, David V. Anderson, and Thomas Plétz. On the Role of
Features in Human Activity Recognition. In Proceedings of the 23rd International
Symposium on Wearable Computers, ISWC 19, pages 78-88, 2019.

Manfredo Atzori, Arjan Gijsberts, Claudio Castellini, Barbara Caputo, Anne-
Gabrielle Mittaz Hager, Simone Elsig, Giorgio Giatsidis, Franco Bassetto, and
Henning Miiller. Electromyography data for non-invasive naturally-controlled robotic
hand prostheses. Scientific Data, 1:140053, December 2014.

G. Li, A. E. Schultz, and T. A. Kuiken. Quantifying Pattern Recognition—Based
Myoelectric Control of Multifunctional Transradial Prostheses. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 18(2):185-192, April 2010.

Jagmohan Chauhan, Young D. Kwon, Pan Hui, and Cecilia Mascolo. ContAuth:
Continual Learning Framework for Behavioral-based User Authentication. Proc.
IMWUT, 4(4):122:1-122:23, December 2020.

Petko Georgiev, Nicholas D Lane, Kiran K Rachuri, and Cecilia Mascolo. Dsp.ear:
Leveraging co-processor support for continuous audio sensing on smartphones. In
Proc. SenSys, pages 295-309, 2014.

M. Smith and T. Barnwell. A new filter bank theory for time-frequency representation.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(3):314-327,
March 1987.

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S.
Torr. Riemannian Walk for Incremental Learning: Understanding Forgetting and
Intransigence. pages 532-547, 2018.

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert Gate: Lifelong
Learning With a Network of Experts. pages 3366-3375, 2017.

Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj Kalamkar, Sasikanth
Avancha, Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan, Bharat Kaul,

113

[71]

[72]

73]

[74]

[77]

78]

[80]

[81]

Evangelos Georganas, et al. Mixed precision training of convolutional neural networks
using integer operations. arXiv preprint arXiw:1802.00930, 2018.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakr-
ishnan. Training deep neural networks with 8-bit floating point numbers. In Advances
in neural information processing systems, pages 7675-7684, 2018.

Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A Dataset and Taxonomy
for Urban Sound Research. In Proc. ACM MM, pages 1041-1044, November 2014.

Akhil Mathur, Nadia Berthouze, and Nicholas D. Lane. Unsupervised Domain
Adaptation Under Label Space Mismatch for Speech Classification. In Proc INTER-
SPEECH, pages 1271-1275, October 2020.

Ashish Mittal, Samarth Bharadwaj, Shreya Khare, Saneem Chemmengath, Karthik
Sankaranarayanan, and Brian Kingsbury. Representation Based Meta-Learning for
Few-Shot Spoken Intent Recognition. In Proc INTERSPEECH, pages 4283-4287,
October 2020.

Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345-1359, October 2010.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized Neural Networks: Training Deep Neural Networks with Weights
and Activations Constrained to +1 or -1. arXiv:1602.02830 [cs], March 2016.

N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar. DeepX: A Software Accelerator for Low-Power Deep Learning Inference
on Mobile Devices. In Proc. IPSN, pages 1-12, April 2016.

Ruoming Pang, Tara Sainath, Rohit Prabhavalkar, Suyog Gupta, Yonghui Wu,
Shuyuan Zhang, and Chung-Cheng Chiu. Compression of end-to-end models. In
Proc. INTERSPEECH, pages 27-31, 2018.

Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
arXiw:1510.00149 [cs], February 2016.

Xiaotang Jiang, Huan Wang, Yiliu Chen, Ziqi Wu, Lichuan Wang, Bin Zou, Yafeng
Yang, Zongyang Cui, Yu Cai, Tianhang Yu, Chengfei Lyu, and Zhihua Wu. MNN:
A Universal and Efficient Inference Engine. Proc. MLSys, 2:1-13, March 2020.

Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk, Mogan Shieh,
Fabio Riccardi, Raman Sarokin, Andrei Kulik, and Matthias Grundmann. On-Device
Neural Net Inference with Mobile GPUs. arXiv:1907.01989 [cs, stat], July 2019.

114

[82]
[83]

[84]

[85]

[36]

[33]

[90]

[91]

[92]

93]

PyTorch.

Lisa Feldman Barrett and James A Russell. Independence and bipolarity in the
structure of current affect. Journal of personality and social psychology, 74(4):967,
1998.

Yu Su, Ke Zhang, Jingyu Wang, and Kurosh Madani. Environment Sound Classifica-
tion Using a Two-Stream CNN Based on Decision-Level Fusion. Sensors, 19(7):1733,
January 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiw:1412.6980 [cs/, January 2017.

Jindong Wang, Yigiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. Deep learning
for sensor-based activity recognition: A survey. Pattern Recognition Letters, 119:3-11,
March 2019.

Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, Pete Warden, and Rocky
Rhodes. Tensorflow lite micro: Embedded machine learning for tinyml systems. In
A. Smola, A. Dimakis, and I. Stoica, editors, Proceedings of Machine Learning and
Systems, volume 3, pages 800-811, 2021.

Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker,
Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and Paul Whatmough.
MicroNets: Neural Network Architectures for Deploying TinyML Applications on

Commodity Microcontrollers. Proceedings of Machine Learning and Systems, 3,
March 2021.

Igor Fedorov, Ryan P. Adams, Matthew Mattina, and Paul Whatmough. SpArSe:
Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers.
pages 4977-4989, 2019.

Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello Edge:
Keyword Spotting on Microcontrollers. arXiv:1711.07128 [cs, eess], November 2017.

Wearable Device for Blind People Could be a Life Changer | NVIDIA Blog, October
2016.

Seulki Lee and Shahriar Nirjon. Fast and scalable in-memory deep multitask learning
via neural weight virtualization. In Proceedings of the 18th International Conference
on Mobile Systems, Applications, and Services, MobiSys '20, pages 175-190, New
York, NY, USA, June 2020. Association for Computing Machinery.

Biyi Fang, Xiao Zeng, and Mi Zhang. NestDNN: Resource-Aware Multi-Tenant
On-Device Deep Learning for Continuous Mobile Vision. In Proceedings of the 24th

115

[94]

[95]

[96]

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

Annual International Conference on Mobile Computing and Networking, MobiCom
18, pages 115-127, 2018.

Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, and
Manik Varma. FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated
Recurrent Neural Network. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 9017-9028. 2018.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad,
and Yanzhi Wang. A Systematic DNN Weight Pruning Framework using Alternating
Direction Method of Multipliers. pages 184-199, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

Y. Kalantidis and Y. Avrithis. Locally Optimized Product Quantization for Approx-
imate Nearest Neighbor Search. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2329-2336, June 2014.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized Product Quantization.
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 36(4):744-755,
April 2014.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing Deep
Convolutional Networks using Vector Quantization. arXiv:1412.6115 [cs], December
2014.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized
Convolutional Neural Networks for Mobile Devices. pages 4820-4828, 2016.

Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou.
And the Bit Goes Down: Revisiting the Quantization of Neural Networks. September
2019.

Pierre Stock, Angela Fan, Benjamin Graham, Edouard Grave, Rémi Gribonval,
Herve Jegou, and Armand Joulin. Training with Quantization Noise for Extreme
Model Compression. September 2020.

Julieta Martinez, Jashan Shewakramani, Ting Wei Liu, loan Andrei Barsan, Wenyuan
Zeng, and Raquel Urtasun. Permute, Quantize, and Fine-Tune: Efficient Compression
of Neural Networks. pages 15699-15708, 2021.

R. Gray. Vector quantization. IEEE ASSP Magazine, 1(2):4-29, April 1984.

116

[105]

[106]

[107]

[108]

[109]

[110]

111]

[112]

[113]

114]

[115]
[116]

[117]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv:1704.04861
[es], April 2017.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 45104520, June
2018.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design. pages 116-131, 2018.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1-38, 1977.

Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han.
MCUNet: Tiny Deep Learning on IoT Devices. arXiw:2007.10319 [cs], July 2020.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient
inference: A whitepaper. arXiv:1806.08342 [cs, stat], June 2018.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEFE, 86(11):2278-2324, November 1998.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng. Reading digits in natural images with unsupervised feature learning. 2011.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german
traffic sign recognition benchmark: a multi-class classification competition. In The
2011 international joint conference on neural networks, pages 1453-1460. IEEE,
2011.

Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recog-
nition. arXiw:1804.03209 [cs], April 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms, 2017.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In Geoffrey Gordon, David Dunson, and Miroslav
Dudik, editors, Proceedings of the Fourteenth International Conference on Artificial

117

Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research,
pages 215223, Fort Lauderdale, FL, USA, 11-13 Apr 2011. PMLR.

[118] Francesca Palermo, Matteo Cognolato, Arjan Gijsberts, Henning Miiller, Barbara
Caputo, and Manfredo Atzori. Repeatability of grasp recognition for robotic hand
prosthesis control based on sEMG data. In 2017 International Conference on
Rehabilitation Robotics (ICORR), pages 1154-1159, July 2017.

[119] Rich Caruana. Multitask Learning. Machine Learning, 28(1):41-75, July 1997.

[120] Wu Liu, Tao Mei, Yongdong Zhang, Cherry Che, and Jiebo Luo. Multi-task deep
visual-semantic embedding for video thumbnail selection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3707-3715, 2015.

[121] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch
networks for multi-task learning. In Proceedings of the IEEE conference on computer
viston and pattern recognition, pages 3994-4003, 2016.

[122] Lei Han and Yu Zhang. Multi-stage multi-task learning with reduced rank. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[123] Andrew M McDonald, Massimiliano Pontil, and Dimitris Stamos. Spectral k-support
norm regularization. In NIPS, pages 3644-3652, 2014.

[124] Lei Han and Yu Zhang. Learning multi-level task groups in multi-task learning. In
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[125] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in
multi-task feature learning. In ICML, 2011.

[126] Giwoong Lee, Eunho Yang, and Sung Hwang. Asymmetric multi-task learning based
on task relatedness and loss. In International conference on machine learning, pages
230-238. PMLR, 2016.

[127] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S Yu. Learning multiple
tasks with multilinear relationship networks. arXiv preprint arXiv:1506.02117, 2015.

[128] Hong Lu, A. J. Bernheim Brush, Bodhi Priyantha, Amy K. Karlson, and Jie Liu.
SpeakerSense: energy efficient unobtrusive speaker identification on mobile phones. In

Proceedings of the 9th international conference on Pervasive computing, Pervasive'll,
pages 188-205, San Francisco, USA, June 2011.

[129] Youngki Lee, Chulhong Min, Chanyou Hwang, Jaeung Lee, Inseok Hwang,
Younghyun Ju, Chungkuk Yoo, Miri Moon, Uichin Lee, and Junehwa Song. So-
cioPhone: everyday face-to-face interaction monitoring platform using multi-phone
sensor fusion. In Proceeding of the 11th annual international conference on Mobile

118

[130]

[131]

[132]

133

[134]

[135]

[136]

[137]

138
[139]
[140]

141]

systems, applications, and services, MobiSys "13, pages 375-388, Taipei, Taiwan,
June 2013.

Jamileh Yousefi and Andrew Hamilton-Wright. Characterizing EMG data using
machine-learning tools. Computers in Biology and Medicine, 51:1-13, August 2014.

Brent D. Winslow, Mitchell Ruble, and Zachary Huber. Mobile, Game-Based Training
for Myoelectric Prosthesis Control. Frontiers in Bioengineering and Biotechnology,
6, 2018.

Erik Scheme and Kevin Englehart. Electromyogram pattern recognition for control
of powered upper-limb prostheses: state of the art and challenges for clinical use.
Journal of Rehabilitation Research and Development, 48(6):643-659, 2011.

Jagmohan Chauhan, Young D. Kwon, Pan Hui, and Cecilia Mascolo. Contauth:
Continual learning framework for behavioral-based user authentication. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., 4(4), December 2020.

Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue, Peter Jin,
Sicheng Zhao, and Kurt Keutzer. SqueezeNext: Hardware-Aware Neural Network
Design. pages 1638-1647, 2018.

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing Energy-Efficient Convo-
lutional Neural Networks Using Energy-Aware Pruning. pages 5687-5695, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single
network by iterative pruning. In Proceedings of the IEEE Conference on Computer
Viston and Pattern Recognition, pages 77657773, 2018.

Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian Tang, and Jieping Ye.
AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High
Compression Rates. Proceedings of the AAAI Conference on Artificial Intelligence,
34(04):4876-4883, April 2020.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
Filters for Efficient ConvNets. November 2016.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained Ternary
Quantization. November 2016.

Fengfu Li, Bo Zhang, and Bin Liu. Ternary Weight Networks. arXiv:1605.04711
[es], November 2016.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect:
Training Deep Neural Networks with binary weights during propagations. Advances
in Neural Information Processing Systems, 28, 2015.

119

142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-
Net: ImageNet Classification Using Binary Convolutional Neural Networks. In
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision —
ECCYV 2016, Lecture Notes in Computer Science, pages 525-542, Cham, 2016.

Milad Alizadeh, Javier Fernandez-Marqués, Nicholas D. Lane, and Yarin Gal. An
Empirical study of Binary Neural Networks” Optimisation. September 2018.

Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and Heng Tao Shen.
TBN: Convolutional Neural Network with Ternary Inputs and Binary Weights. pages
315-332, 2018.

Shihui Yin, Zhewei Jiang, Jae-Sun Seo, and Mingoo Seok. XNOR-SRAM: In-Memory
Computing SRAM Macro for Binary/Ternary Deep Neural Networks. IEEE Journal
of Solid-State Circuits, 55(6):1733-1743, June 2020.

Jingyuan Zhao, Zhang Sihao, and Zeng Jing. Review of the sparse coding and the
applications on image retrieval. In 2016 International Conference on Communication
and Electronics Systems (ICCES), pages 1-5, October 2016.

Tiezheng Ge, Kaiming He, and Jian Sun. Product Sparse Coding. pages 939-946,
2014.

Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi. LCNN: Lookup-
Based Convolutional Neural Network. pages 7120-7129, 2017.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive
neural networks. arXiv preprint arXiw:1606.04671, 2016.

Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan,
and Chu-Song Chen. Compacting, Picking and Growing for Unforgetting Continual
Learning. Advances in Neural Information Processing Systems, 32, 2019.

Khurram Javed and Martha White. Meta-Learning Representations for Continual
Learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 1820-1830. Curran Associates, Inc., 2019.

Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O. Stanley,
Jeff Clune, and Nick Cheney. Learning to Continually Learn. arXiv:2002.09571 [cs,
stat/, March 2020.

Eugene Lee, Cheng-Han Huang, and Chen-Yi Lee. Few-shot and continual learn-
ing with attentive independent mechanisms. In Proceedings of the IEEE/CVF

120

[154]

[155]

[156]

[157]

158

[159]

[160]

[161]

[162]

163

International Conference on Computer Vision (ICCV), pages 9455-9464, October
2021.

Abdelrahman Hosny, Marina Neseem, and Sherief Reda. Sparse bitmap compression
for memory-efficient training on the edge. In 2021 IEEE/ACM Symposium on Edge
Computing (SEC), pages 14-25, 2021.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and Daan
Wierstra. Matching Networks for One Shot Learning. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 3630-3638. 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning
for fast adaptation of deep networks. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, pages 1126-1135, Sydney,
NSW, Australia, August 2017. JMLR.org.

Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch,
and Pieter Abbeel. Continuous adaptation via meta-learning in nonstationary and

competitive environments. In International Conference on Learning Representations,
2018.

Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via meta-
learning: Continual adaptation for model-based RL. In International Conference on
Learning Representations, 2019.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Alex;
Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. A continual learning survey:
Defying forgetting in classification tasks. IEEFE Transactions on Pattern Analysis
and Machine Intelligence, 44(7):3366-3385, 2022.

Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, and Davide Maltoni.
Latent replay for real-time continual learning. arXiv preprint arXiv:1912.01100,
2019.

Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski, Jian Zhang,
and Christopher Ré. Low-Memory Neural Network Training: A Technical Report.
arXiw:1904.10631 [cs, stat], April 2019.

V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient Processing of Deep Neural
Networks: A Tutorial and Survey. Proceedings of the IEEE, 105(12):2295-2329,
December 2017. Conference Name: Proceedings of the IEEE.

Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Haotian Tang, Hanrui Wang, Ligeng Zhu,
and Song Han. Enable Deep Learning on Mobile Devices: Methods, Systems, and

121

[164]

[165]

[166]

[167]

168

[169)]

170]

[171]

Applications. ACM Transactions on Design Automation of Electronic Systems,
27(3):20:1-20:50, March 2022.

Yu Zhang, Tao Gu, and Xi Zhang. MDLdroidLite: a release-and-inhibit control
approach to resource-efficient deep neural networks on mobile devices. In Proceedings
of the 18th Conference on Embedded Networked Sensor Systems, SenSys '20, pages 463—
475, New York, NY, USA, November 2020. Association for Computing Machinery.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not
parameters for efficient on-device learning. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 11285-11297. Curran Associates, Inc., 2020.

Seulki Lee and Shahriar Nirjon. Learning in the Wild: When, How, and What to
Learn for On-Device Dataset Adaptation. In Proceedings of the 2nd International
Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet
of Things, AlChallengeloT 20, pages 34-40, New York, NY, USA, November 2020.
Association for Computing Machinery.

Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie Shao,
and Tarek Abdelzaher. Deep compressive offloading: speeding up neural network
inference by trading edge computation for network latency. In Proceedings of the
18th Conference on Embedded Networked Sensor Systems, SenSys '20, pages 476-488,
New York, NY, USA, November 2020. Association for Computing Machinery.

Chuangi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang
Liu. A Survey on Deep Transfer Learning. In Véra Kurkovéa, Yannis Manolopoulos,
Barbara Hammer, Lazaros Iliadis, and Ilias Maglogiannis, editors, Artificial Neural
Networks and Machine Learning — ICANN 2018, Lecture Notes in Computer Science,
pages 270-279, Cham, 2018. Springer International Publishing.

Longlong Jing and Yingli Tian. Self-supervised Visual Feature Learning with Deep
Neural Networks: A Survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1-1, 2020. Conference Name: IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. FedMask: Joint
Computation and Communication-Efficient Personalized Federated Learning via
Heterogeneous Masking. In Proceedings of the 19th ACM Conference on Embedded
Networked Sensor Systems, SenSys 21, pages 42-55, New York, NY, USA | November
2021. Association for Computing Machinery.

Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee. MetaSense: Few-shot
Adaptation to Untrained Conditions in Deep Mobile Sensing. In Proceedings of the

122

17th Conference on Embedded Networked Sensor Systems, SenSys '19, pages 110-123,
New York, NY, USA, 2019. ACM.

123

	Progress Updates
	Thesis Outline
	Timeline
	Contributions
	Exploring System Performance of Continual Learning for Mobile and Embedded Sensing Applications
	Introduction
	Related Work
	Continual Learning
	Deep Learning for Mobile Sensing Systems

	Continual Learning for Mobile and Embedded Sensing Framework
	Continual Learning Setup and Three Scenarios
	Incremental Learning Methods
	Characterization of Hyper-parameters
	Model Training Process
	Implementation

	Experimental Setup
	Datasets
	Evaluation Metrics

	Findings
	Performance on Simple and Mildly Difficult Tasks
	Performance on Many Sequential Tasks
	Generalization
	Storage, Latency, and Memory Footprint
	Performance with IL parameters

	Discussion
	Conclusions and Future Work

	FastICARL: Fast Incremental Classifier and Representation Learning with Efficient Budget Allocation in Audio Sensing Applications
	Introduction
	Methodology
	Problem Formulation
	ICARL
	FastICARL

	Evaluation
	Datasets
	Experimental Setup
	Implementation
	Results

	Conclusions

	YONO: Modeling Multiple Heterogeneous Neural Networks on Microcontrollers
	Introduction
	YONO
	Overview
	Product Quantization and Compressing Single Neural Network
	Compressing Multiple Heterogeneous Networks
	Network Optimization
	Optimization Heuristics
	In-memory Execution and Model Swap Framework on MCUs

	System Implementation
	Evaluation
	Experimental Setup
	Performance
	Scalability
	Generalizability
	Evaluation on In-Memory Execution and Model Swapping Framework on MCUs

	Discussion
	Related Work
	Conclusions

	MetaCLNet: Rehearsal-based Meta Continual Learning with Compressed Latent Replay and Neural Weights
	Introduction
	Design
	Problem Formulation & System Overview
	Meta Continual Learning
	MetaCLNet
	Rehearsal Techniques
	Sparse Bitmap Compression for Latent Replays
	Product Quantization for Compressing Latent Replays
	Quantizing Neural Weights

	Implementation
	Evaluation
	Experimental Setup
	Accuracy
	Memory Footprint
	End-to-end Latency & Energy Consumption
	Ablation Study
	Parameter Analysis

	Related Work
	Discussion
	Conclusions

