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Chapter 1

Introduction

1.1 Motivation

Recent advances in deep learning have made unprecedented progress in various applications
such as Computer Vision (CV) [1], natural language processing [2], and ubiquitous
computing [3]. In particular, in mobile sensing applications that hinge on a fine-grained and
continuous collection of a data stream from sensors, many studies adopt a deep learning
approach and demonstrated its effectiveness and feasibility. With the rise of mobile,
wearable devices, and the Internet of Things (IoT), the proliferation of sensory type data
fostered the breakthroughs of deep neural networks in many mobile sensing applications.
For example, researchers use deep neural networks based on sensory data in such mobile
sensing tasks as human activity recognition [4, 5], gesture recognition [6], tracking and
localization [7], mental health and wellbeing [8], and audio sensing applications [9]. However,
a vital component common to the above applications is the need for the deployed model
to adapt to a dynamically changing environment and to accommodate new user inputs
and classes over time. In other words, the ability to learn continually [10, 11, 12] (i.e., to
learn consecutive tasks without forgetting previously learned tasks) becomes crucial in
scenarios where a learned model is deployed in real world.

In general, Machine Learning (ML) models typically suffer from Catastrophic Forgetting
(CF) [13, 14], that is, a learned model experiences performance degradation on previously
learned task(s) (e.g., task A) as information relevant to a new task (e.g., task B) is
incorporated. Hence, many researchers have developed various Continual Learning (CL)
methods designed to solve the CF issue by learning new tasks/classes over time while
retaining previously learned knowledge [15].

However, enabling CL in mobile computing imposes unique challenges. First of all, there
exists a need to conduct comprehensive empirical evaluations of various CL methods in
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mobile sensing tasks. Since many CL methods are developed in the CV area [16, 17, 15], it is
unclear whether the same techniques can be applied to another data modality different from
images. For example, Human Activity Recognition (HAR) relies on Inertial Measurement
Unit (IMU) data [18], Gesture Recognition (GR) relies on Surface Electromyography
(sEMG) [19], Emotion Recognition (ER) relies on audio and speech signals [20]. As argued
in [9], the signal steams on which mobile sensing data is primarily based consist of a
one-dimensional time-series signal, fundamentally different from two-dimensional images.
Moreover, it is essential to capture the signal’s sequence information for representing such
signal inputs. Therefore, It is crucial to examine how different categories of existing CL
methods perform in mobile sensing tasks and then investigate the trade-offs among them.

Next, the nature of limited computational resources on mobile systems is another challenge
that I address in my thesis. Unlike conventional model training and updates where the
learning happens on powerful GPU clouds with large memory and storage sizes (e.g., 10
GB RAM and 1 TB storage), the system resources on a mobile system are severely limited.
For example, many mobile and wearable devices contain memory and storage sizes of
around 512 MB or moderately larger sizes. Furthermore, with the rise of the IoT, where
billions of tiny microcontrollers (MCUs) have been deployed in the real world, we need a
system that can address the extremely resource-constrained device [21, 22]. For example,
tiny MCUs such as STMF767ZI have only 512 KB Static Random-Access Memory (SRAM)
for intermediate data and 2 MB on-chip embedded flash (eFlash) memory for program
storage. Hence, CL on MCUs, where it has a few KiloBytes (KB) of memory and storage
size, is a very challenging and essential task for facilitating billions of tiny mobile and
embedded devices (i.e., on-device systems) being able to adapt to frequently changing
environments without the help of powerful servers. Besides, updating models manually
from scratch would be very tedious and time-consuming, considering a massive number of
the deployed devices. Hence, more intelligent on-device systems must be deployed in the
real world and updated to the environment continuously.

Among CL methods, the exemplar-based method shows superior performance with an
additional storage budget for saving some representative samples (can be raw data or inter-
mediate representation) of the learned classes [17, 23]. However, on resource-constrained
devices with small memory and storage sizes, it has not been fully understood how CL
methods ensure high performance under such extremely resource-constrained environments.
Hence, it is critical to investigate the feasibility of CL under limited resources with respect
to compute overhead, memory and storage requirements. Based on this study, it is needed
to propose a better approach to ensure the high performance of CL and to reduce its
computational overhead and memory/storage requirements.

Finally, CL is also limited in a way that it requires a relatively large amount of labeled
data to learn new tasks/classes [17, 23, 15]. In particular, in mobile sensing tasks, it is
drastically more difficult to collect a labeled data from an incoming stream of the user
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inputs than images that can be labeled after they are collected [24]. In addition, the more
training data is required to do CL, the more computational resources are needed. For
example, larger memory and storage sizes are needed to accommodate more training data,
and more computation is required to update the model eventually. Thus, it is essential to
enable CL with a small amount of labeled data to minimize the expensive manual labeling,
computational costs, and system requirements.

1.2 Objectives

Motivated by the aforementioned limitations and challenges of applying CL in mobile
computing, the main objective and scope of this thesis are to develop an efficient on-device
system that can sense, learn, and optimize Continually in the wild. I attempt to achieve this
objective by first investigating the advantages and disadvantages of current CL methods in
mobile sensing tasks. Then, I plan to overcome the strict resource constraints of mobile and
embedded systems by optimizing the computational costs and memory and storage usages
and developing a better compression technique. Finally, I aim at enabling an adaptive CL
system by incorporating meta-learning [25] so that the system relies on minimal human
intervention.

Exploration of CL in mobile sensing applications

As described in Chapter 1.1, prior works in the literature are primarily focused on image
modality, making it unknown how the existing CL methods perform in different modalities
of mobile sensing applications based on a stream of signals (e.g., accelerometers, speech,
and sEMG). Therefore, it is crucial to ask the following research questions: how accurately
do existing CL methods of different categories perform on various mobile sensing tasks?,
what are the trade-offs among different categories of CL methods? In addition, to address
the resource constraints of the mobile and embedded systems, I also asked the following
research question: is CL feasible under a strict resource constraint in terms of computational
overhead, memory, and storage size?

Hence, I performed the first systematic study to examine the CF problem on mobile and
embedded sensing applications using various CL methods. First of all, I employed six CL
methods from three different CL categories to evaluate their effectiveness and efficiency
on six datasets from different modalities of mobile sensing tasks. Second, To investigate
the system limitations imposed by different configurations of CL, I implemented the CL
framework on two types of devices with different specifications – an Nvidia Jetson Nano
GPU (used in mobile robotics and tablets) and a smartphone (One Plus 7 Pro) CPU –
with respect to computational costs, storage, and memory footprint. Finally, I examined
and discussed trade-offs of studied CL methods regarding their performance, storage
footprint, computational costs, and the peak memory limit to consider the feasibility and
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applicability of the CL methods on mobile and embedded devices.

More detailed description, results, and findings of this work (exploration of CL in mobile
sensing applications) are presented in Chapter 3 and in Appendix A. I summarized the
results and findings of this work and submitted it to SEC ’21 (The Sixth ACM/IEEE
Symposium on Edge Computing). Currently, the paper is under review.

Efficient CL systems on resource-constrained devices

Based on the work (Appendix A) introduced above, I identified that although CL methods
can operate on Jetson Nano and a smartphone, they are computationally very costly.
In particular, I found that a representative exemplar-based method (iCaRL), which
outperforms other CL methods, requires a large budget for storing raw data samples. Thus,
I asked the following question: is there a better way to reduce the overhead of resources
and computations in enabling CL without sacrificing its accuracy?

Thus, I developed an end-to-end framework, FastICARL, by enabling efficient and accurate
on-device CL. FastICARL improves upon iCaRL by reducing the CL time and alleviating
the storage requirements to store samples. First, FastICARL utilizes a k-nearest-neighbor
and a max heap data structure to search exemplars more efficiently. After that, I further
optimized FastICARL by applying quantization on exemplars to reduce the storage
requirement. In addition, I implemented FastICARL on two mobile and embedded devices,
Jetson Nano and a smartphone (Google Pixel 4). I experimented with FastICARL in two
audio sensing applications to show its effectiveness and efficiency as a case study.

More detailed description, results, and findings of this work (FastICARL) are presented in
Chapter 3 and in Appendix B. Moreover, this work is published at INTERSPEECH ’21
(Conference of the International Speech Communication Association).

Exploration of better compression techniques for CL systems of multiple het-
erogeneous networks

In the work introduced in the subsection above (Appendix B), I have conducted an initial
investigation of how and to what extent a quantization of exemplars affects the overall
performance of CL (for exemplar-based CL methods). However, it has not been fully under-
stood about the relationships between various compression techniques (see Chapter 2.3 for
details) and CL methods in terms of performance, latency, and memory/storage overheads.
Furthermore, compression of both the CL model’s weights and its stored exemplars can
severely deteriorate the model’s performance, which is a challenge that I plan to tackle.
Moreover, mobile and embedded systems deployed in the wild often need to run multiple
applications. Since such systems’ memory is limited, retaining a pre-trained model for each
application is not scalable nor practical, although applying compression on each model
can mitigate memory/storage issues. Sharing network structure [26] can be a solution for
correlated and similarly structured models, however, it is not practical when systems want
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to operate multiple heterogeneous models. Therefore, I ask research questions as follows:
is it feasible to compress multiple heterogeneous models without sacrificing accuracy? and
how can I enable compression of heterogeneous CL models and their exemplars without
losing the ability to adapt to new classes and to remember previous knowledge?

I plan to tackle this problem with the following steps.

1. I start by exploring a variety of techniques that can compress multiple heterogeneous
models such as weight memory virtualization [27] or product quantization (PQ) [28]
and identifying their benefits and disadvantages in compressing both multiple models
and exemplars.

2. I plan to develop better approaches to further compress the multiple models and
their exemplars by extending the existing compression techniques. For example,
PQ can be further optimized by removing redundant items in its codebook, which
contains prototypical weight vectors of model weights. One idea is to apply a pruning
framework [29, 30] to the found codebook.

3. I plan to incorporate this work of compressing multiple heterogeneous models into
the CL framework. Then, the resulting CL system can operate multiple models with
less memory/storage burden and update its models at any time.

Adaptive CL systems with minimal human intervention

Many prior works in CL require a relatively large amount of labeled data to learn new
tasks/classes [17, 23, 15]. For mobile sensing tasks, it is more complicated to collect a
labeled data different from image data. This point leads me to ask the following questions:
how can I reduce the amount of labeled data for learning new incoming classes to enable
CL while ensuring high performance? To what extent can I decrease the labeled data
size, and what are the trade-offs between the amount of labeled data and the CL model’s
performance?

Meta-learning (i.e., few-shot learning) [25, 31, 32, 33, 34] gains an increasing interest
in the machine learning community due to its fast adaptation speed and impressive
performance on unseen classes. Also, some initial explorations [33, 34] attempt to combine
two fields, meta-learning and continual learning, called Meta Continual Learning (Meta
CL). Among them, Neuromodulated Meta-Learning Algorithm (ANML) [34] shows an
impressive performance. It retains high accuracy until the model is fine-tuned up to 600
classes in the meta-testing phase.

Meta CL opens up a new door for solving a major bottleneck of enabling a CL system
(i.e., expensive computational costs for model update) and continuously adapting to new
user inputs with minimal human intervention. Since Meta CL can learn new classes/tasks
with only a few labeled samples, updating the model does not take much time compared
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to a conventional CL. However, since Meta CL relies on only a few samples for the model
update for learning new classes, it could have a very high variation of performance in that
the model can fail to learn a new class. Thus, to ensure to produce a reliable performance
(i.e., low variance) is also a significant challenge to tackle.

Hence, I want to tackle this research direction as follows.

1. I begin by exploring ANML and identify its benefits and disadvantages in the area
of mobile sensing.

2. I plan to resolve any disadvantages of the Meta CL method and also extend it from a
regularization-based method [16] to an exemplar-based method [17] (see Chapter 2.1
for more details about different CL categories) by saving some representative samples
in the form of hidden features of an intermediate representation. By doing so, it is
expected that the model is able to ensure higher performance and potentially lower
variance since it is trained with not only new inputs but also stored samples. Also,
as observed in Appendix A and [17, 35, 36] exemplar-based methods outperform
regularization-based methods.

3. However, storing some samples comes with a storage/memory overhead, which can
severely burden resource-constrained devices like embedded systems, wearables, and
MCUs. Thus, I plan to incorporate compression techniques, explored in the above
subsection, into the Meta CL framework so that my new method can obtain the
best of both worlds: (i) high and reliable performance and (ii) low memory/storage
overhead.

1.3 Structure of the Report

In this chapter, I describe the motivations, objectives, and scope of this thesis. Chapter 2
summarizes the related work and Chapter 3 presents the works that I have conducted
in the first year of my Ph.D. After that, Chapter 4 presents the tentative timeline and
summaries of future work that I plan to pursue for the rest of my Ph.D.
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Chapter 2

Related Work

2.1 Continual Learning

Continual Learning (CL) studies the ability to learn over time from a coming stream of
data by incorporating new knowledge while retaining previously learned knowledge [15].
CL is also called incremental learning (IL) [17], lifelong learning [15], and sequential
learning [13]. In a CL setup, learning methods typically suffer from CF [13, 14], that is, a
learned model experiences performance degradation on previously learned task(s) (e.g.,
task A) as information relevant to a new task (e.g., task B) is incorporated. It is because
the learned parameters of the network that are optimized to perform well in task A (i.e.,
important weights to task A) are changed to maximize/minimize the objective/loss of
task B. In addition, there exist various fields that are related to CL in the ML literature.
First of all, Multi-Task Learning (MTL) attempts to solve the problem of learning across
a variety of tasks [37, 38] at the same time while exploiting commonalities and differences
across tasks. MTL assumes that simultaneous access of the model to all the tasks at
once is possible, and MTL does not include continuous adaptation after the model has
been deployed in contrast to CL. Transfer Learning aims to improve the performance of a
target task by using knowledge learned from a source task or domain [39, 40]. Similarly, in
Domain Adaptation, the source and target tasks are the same, but the data is drawn from
different domains [41]. Khan et al. [40] used domain adaptation to allow HAR models
trained in one context to be readily adapted to a different contextual domain. However,
the key difference of domain adaptation and transfer learning compared to CL is that
the performance on the source task(s) is not considered during training in both transfer
learning and domain adaptation. Furthermore, there are Zero-shot Learning [42, 43],
One-shot Learning [44, 45, 46], or Few-shot (Meta) Learning paradigms [25, 31] which aim
to improve the performance of a model on new or unseen tasks but does not consider the
performance of the model on previously learned tasks.
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In recent years, many researchers have focused on solving the CF issue by proposing a range
of CL approaches. The first group of approaches is a regularization-based method [16, 47,
48, 49, 50, 51] where regularization terms are added to the loss function to minimize changes
to important weights of a model for previous tasks to prevent forgetting. Kirkpatrick et
al. [16] proposed Elastic Weight Consolidation (EWC) which uses the Fisher matrix to
estimate the importance of each weight of a model and thus adjust the update of the
weights based on its importance. Besides, Zenke et al. [47] proposed Synaptic Intelligence
(SI) which maintains an online estimate of the weights’ importance with respect to its
contribution to the change in the loss function. Another group of approaches is a replay-
based method [52, 53] where model parameters are updated by complementing the training
data for each new task with “pseudo-data” representative of the previous task. Li and
Hoiem [52] developed a Learning without Forgetting (LwF) that labels the input data of
the current task using the model trained on the previous tasks and uses them pseudo-
data. The replayed data can help the model’s output stay close to that of the model
trained on the previous tasks. Besides, Shin et al. [53] proposed a Generative Adversarial
Networks (GAN) [54] based CL method that utilizes a GAN to generate data from past
experiences when learning on new data. Lastly, replay with exemplars-based methods
[17, 55, 36, 23, 35] require training data from the new class and also few training samples
from earlier classes to update the model. Rebuffi et al. [17] proposed an Incremental
Classifier and Representation Learning (iCaRL) that stores a small set of raw data of
previous tasks as exemplars to prevent forgetting and learn a new task. In addition,
Lopez-Paz and Ranzato [55] proposed a new CL method, Gradient Episodic Memory
(GEM), that utilized episodic memory to enable CL by minimizing negative backward
transfer (i.e., forgetting).

The proposed CL methods to solve CF are empirically evaluated using small and large
datasets [11, 12]. However, these empirical studies either adopt only a few methods [11, 12]
or neglect resource constraints of mobile and embedded devices with respect to storage
and latency [12]. To fill this gap, we perform a systematic study on six most cited (or
state-of-the-art) CL methods from three representative categories of CL approaches (see
Chapter 3 and Appendix A for details).

2.2 Mobile and Embedded Sensing Applications

Deep learning is increasingly being applied in mobile and embedded systems as it achieves
state-of-the-art performances on many sensing applications such as activity recognition [18,
56], gesture recognition [57], and audio sensing [58]. First of all, one of the most widely
studied mobile sensing application is HAR [18, 59, 60], where the aim is to determine
various human activities automatically (e.g., from a simple activity like walking to a
complex activity like cooking a meal) based on smartphone and wearable (body-worn)
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IMU sensors. Hammerla et al. [18] experimented with three variants of deep learning
approaches such as feed-forward, convolutional, and recurrent neural networks on HAR
datasets, and then presented guidelines for training neural networks. Moreover, Ordóñez
and Roggen [61] proposed the DeepConvLSTM model in which convolutional layers extract
the features from raw IMU data, and Long-Short Term Memory (LSTM) recurrent layers
capture temporal dynamics of feature activations to improve the performance of HAR.

Another application frequently used in mobile sensing is to recognize hand gestures (e.g., fist
and open palm) using sEMG signals generated during muscle contractions [62, 63, 6, 64, 19].
sEMG signals are measured quantitatively in a non-invasive fashion by estimating the
electrical potential differences between muscle and ground electrodes. sEMG signal is used
for medical [65], rehabilitation [66], human-computer interactions [67], and upper-limb
prostheses control [68]. Zhai et al. [69] proposed a self-recalibrating framework that can
be updated to maintain the model’s performance so that it does not need users’ additional
labels for re-training. Shatilov et al. [70] developed a low-cost and adaptable system for
prosthetic hand by incorporating an sEMG sensor, a mobile phone, a cloud component, and
a 3D printed arm. Finally, Becker et al. [64] used sEMG of the forearm to classify finger
touches with their proposed neural architecture combining convolutional, feed-forward,
and LSTM layers.

Last but not least, the audio sensing application are also one of the foundational mobile
sensing applications that much research has focused on to deliver behavioral insights
to users. The audio sensing tasks include Emotion Recognition (ER) [20], Speaker
Identification [71], Speaker Counting [72], Environmental Sound Classification (ESC) [73],
and Conversation Analysis [74], and Keyword Spotting (KWS) [75, 76]. Lu et al. [77]
proposed a scalable framework, called SoundSense, to recognize meaningful sound events
that occur in users’ everyday lives. The authors designed the general-purpose sound sensing
system to work on resource-limited phones. Lee et al. [74] developed SocioPhone, a new
mobile platform for face-to-face interaction monitoring to facilitate group conversations by
utilizing meta-linguistic contexts of conversation. Moreover, Georgiev et al. [78] proposed
a deep learning modeling and optimization framework that explicitly targets various audio
sensing tasks in resource-constrained embedded systems.

In contrast to these works, I investigated to what extent current CL methods can enable a
practical CL system for mobile and embedded sensing applications on-device and examined
the implications of such systems regarding performance, efficiency, generalizability. In
addition, throughout my thesis, I plan to continue to examine and improve upon the
capability of CL systems on-device in the context of mobile sensing applications in terms
of both performance and efficiency (e.g., smaller memory and storage footprint with less
latency).
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2.3 Model Compression

While more and more deep learning models show impressive performance, it comes with
the peril of a tremendous amount of deeper network architecture and training data [79].
Although higher performance is critical for many applications, high model complexity
demands much more computation resources and often hits the hardware memory limit on
resource-constrained devices such as mobile and embedded devices or MCUs [80]. Hence,
many researchers focus on developing a method to improve efficiency without sacrificing
the model’s accuracy.

First of all, many researchers have focused on designing and hand-drafting more ef-
ficient network architectures, namely, SqueezeNets [81, 82], ShuffleNets [83, 84], and
MobileNets [85, 86]. In particular, Howard et al. [85] proposed MobileNet, a new network
architecture, that utilizes depth-wise separable convolutions. MobileNet is based on the
depth-wise separable convolutions which factorize a standard convolution into a depthwise
convolution and a 1× 1 convolution (pointwise convolution), making MobileNet consumes
8− 9 times less computation than standard convolutions. Sandler et al. [86] designed a
novel layer called the inverted residual with a linear bottleneck on which MobileNetV2 is
based and further improved the performance and efficiency over MobileNet. Recently, Neu-
ral Architecture Search (NAS) methods [87, 88, 80, 89, 90, 91, 92, 93, 94] gain popularity
in designing efficient neural architectures by automating the process of finding network
structures. NAS often achieves better efficiency than hand-drafted neural architectures.
For example, Liu et al. [87] introduced a novel algorithm for differentiable NAS based on
bilevel optimization which can be used to both convolutional and recurrent layers. Also,
Cai et al. [90] developed a progressive shrinking algorithm that first trains a large neural
network and then progressively fine-tune the network to support smaller sub-networks
that share weights with the larger ones.

Secondly, another thread of research is weight pruning methods that leverage the inherent
redundancy in the weights of neural networks [95, 29, 96, 97, 98, 30, 99, 100, 101, 102]. Han
et al. [95, 29] proposed a iterative pruning framework that removes weights having small
magnitudes and retrain the model until the model reaches a certain threshold in terms
of performance or model sizes. In addition, Yang et al. [96] introduced the energy-aware
pruning, and Liu et al. [98] utilized a structural regularity of the neural networks and
Alternating Direction Method of Multipliers (ADMM)-based pruning framework [99],
showing an impressive result.

Furthermore, quantization of model weights and activiations has been an active area of
research. Many prior works quantize the weights and activations from 32-bit float to 8-bit
integer [103], ternary values (2-bit) [104, 105], binary values (1-bit) [106, 107, 108, 109],
and mixed precision [110, 111]. Also, weight clustering methods are proposed to group
weights into several clusters to compress a model. Chen et al. [112] proposed a hashing
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trick to group each weight, and Han et al. [29] incorporated the weight clustering into
the iterative pruning framework. Moreover, researchers studied techniques that quantize
an array of scalars of the weights to compress a model or a particular layer. Some works
extended a sparse coding [113] to learn a compact representation that covers the feature
space of weights of a model [114, 115]. Bagherinezhad et al. [115] proposed LCNN, lookup-
based convolutional neural network, encoding convolutions by a few lookups to a learned
dictionary that covers weights’ feature space. However, while sparse coding-based methods
could well represent a feature space of weights, it requires non-trivial memory to store the
learned dictionary as well as its indices of weights to the dictionary. Also, many researchers
examined vector quantization-based methods. For example, Gong et al. [116] conducted
an empirical study to compare binarized networks, scalar quantization using k-means (i.e.,
weight clustering), Product Quantization (PQ) [28]. The authors found that PQ shows the
best result among the studied methods. Besides, Wu et al. [79] showed 4− 6× speed-up
and 15− 20× compression with one percent loss of accuracy by applying PQ together with
the error-correction mechanism. In addition, Hayes et al. [23] utilized PQ to compress
an intermediate layer of a network as exemplars to maintain the high performance of CL.
Chen et al. [117] proposed a differentiable PQ to compress an embedding layer in Natural
Language Processing which is typically very large in terms of size.

As shown in the works described above, the vector quantization technique (PQ) demon-
strates the effectiveness and potential in weight compression. Nevertheless, all the prior
works are limited in the utilization of PQ to a single model or a layer (which is on a scale of
tens of millions of weights). Given that PQ is typically used to index billions of vectors for
approximate nearest neighbor search in database community [28, 118, 119], I argue that
PQ has not been fully utilized in model compression. Also, PQ can be used to compress
multiple heterogeneous networks [27]. Finally, the learned PQ codebook might be able to
generalize well to unseen model weights. Those are the questions that I will attempt to
answer in my future work. Note that the scope of my work is limited to lossy compression
to maximize the compression rate (although lossy compression can incur accuracy loss) as
Ko et al. [120] showed that the lossless compression technique alone achieves a relatively
low compression rate (∼ 2×) without accuracy loss.

2.4 Meta Continual Learning

In actual deployment scenarios, it is very tough to obtain a large number of labeled training
data to update deployed models or add new classes to them. It is because users are only
willing to annotate a few samples for the new classes. As we discussed in Chapter 1, the
annotation problem is even more challenging in mobile sensing applications since it is also
not straightforward to label a stream of signals. However, conventional CL methods still
require much training data to prevent CF while learning new classes.
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Thus, Meta CL or Few-shot Class-Incremental Learning (FSCIL) [34, 33, 121, 122, 123, 124]
has been proposed to overcome the limitation mentioned above. This method aims to solve
two challenges: (i) to avoid CF of old classes, (ii) to prevent overfitting to few samples of
new classes. Tao et al. [123] proposed a novel FSCIL framework that employs a neural gas
(NG) network [125] to learn the topology of feature space to represent learned knowledge
and solves FSCIL problem by adjusting the update of the NG network. In addition, Javed
and White [33] demonstrated that the proposed method, OML, can successfully avoid
interference and ensure learning of new knowledge up to 200 classes by continually learning
through a meta-objective. Then, Beaulieu et al. [34] extended the work of Javed and
White [33] using a neuromodulatory (NM) network that learns selective activation of
another network that performs a prediction. Beaulieu et al. showed that their method
could successfully solve CF problems up to 600 classes.

In my thesis, I plan to improve upon existing works on Meta CL and FSCIL by uti-
lizing additional storage/memory to store representative samples or intermediate layers
(i.e., extend regularization-based methods to exemplar-based methods) to ensure high
performance. After that, to minimize the resource overhead, I will incorporate model
compression techniques in my Meta CL framework.
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Chapter 3

First-year Contributions

As I have described in Chapter 1, I began with analyzing the feasibility and applicability
of CL methods in a variety of mobile sensing applications while considering the limits
poised by mobile and edge platforms, namely, low computational power, smaller memory
and storage. Then, I employed six CL methods from three different CL categories to
evaluate their effectiveness and efficiency on six datasets from different modalities of mobile
sensing tasks. In detail, I employed three datasets from the widely researched application
of Human Activity Recognition (HAR) [126] based on accelerometer, gyroscope, and
magnetometer data. Next, I included two datasets from Gesture Recognition (GR) [69]
based on surface electromyography (sEMG). Finally, I further incorporated an Emotion
Recognition (ER) dataset [20] based on speech among audio sensing tasks to make our
results generalizable to different modalities across diverse applications. Also, the six CL
methods fall under three paradigms: regularization ((1) Elastic Weight Consolidation:
EWC [16], (2) Synaptic Intelligence: SI [47], and (3) Online EWC [48]), replay ((4)
Learning without Forgetting: LwF [52]), and replay with exemplars ((5) Incremental
Classifier and Representation Learning: iCaRL [17] and (6) Gradient Episodic Memory:
GEM [55]). After that, I implemented an end-to-end CL framework on two kinds of devices
with different specifications: Jetson Nano and an off-the-shelf smartphone. Through the
extensive evaluation, I identified that all the CL methods can largely mitigate the CF issue
in relatively easier CL scenarios. Whereas, in the difficult CL scenarios, only exemplars-
based CL method can successfully solve CF problem while other CL methods are not
effective in preventing CF. This work became a good starting point helping me understand
the challenges and limitations of current CL methods when applied to mobile sensing
applications on resource-constrained devices. The result of the first work is presented in
Appendix A. Currently, the paper is under review at SEC ’21 (The Sixth ACM/IEEE
Symposium on Edge Computing)

Based on the findings of the first work, I realized that one of the major bottlenecks of
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enabling end-to-end CL on-device is an expensive computational requirement to learn
new user inputs/classes (e.g., activities in HAR, gestures in GR). Furthermore, the high-
performing CL method, iCaRL (exemplar-based method), requires a large storage budget
to store representative samples of learned classes. Motivated by these limitations of prior
works, I proposed a novel CL method, FastICARL, that improves upon iCaRL by reducing
the CL time as well as alleviating the storage requirements to store samples. To develop
FastICARL, I first optimized the construction process of an exemplar set (which takes
most of the CL time) to shorten the CL time to tackle the limitation on computational
overhead. Specifically, to find the informative exemplars that can best approximate feature
vectors over all training examples, ICARL relies on herding which contains inefficient
double for loops. Instead, FastICARL utilizes a k-nearest-neighbor and a max heap data
structure to search exemplars more efficiently. In addition, to address the limitation on
storage burden in resource-constrained devices, I further optimized FastICARL by applying
quantization on exemplars to reduce the storage requirement. I converted the 32-bit float
data type into 16-bit float and 8-bit integer data types. Furthermore, I implemented our
end-to-end CL framework on mobile and embedded devices of two different specifications:
Jetson Nano and a smartphone (Google Pixel 4). To demonstrate its effectiveness and
efficiency, I experimented with it in two audio sensing applications: Emotion Recognition
(ER) task and an Environmental Sound Classification (ESC) as a case study. This work is
published at INTERSPEECH ’21 (Conference of the International Speech Communication
Association)

Papers Submitted

Exploring System Performance of Continual Learning for Mobile and Embedded Sensing
Applications
Young D. Kwon, Jagmohan Chauhan, Abhishek Kumar, Pan Hui, and Cecilia Mascolo.
The Sixth ACM/IEEE Symposium on Edge Computing, 2021. (SEC ’21)

Papers Published

FastICARL: Fast Incremental Classifier and Representation Learning with Efficient Budget
Allocation in Audio Sensing Applications
Young D. Kwon, Jagmohan Chauhan, Cecilia Mascolo.
Conference of the International Speech Communication Association, 2021. (INTER-
SPEECH ’21)
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Chapter 4

Thesis Proposal

My research focuses on building an efficient on-device system that is exceptionally
lightweight and capable of updating itself to changing environments and user inputs
continually with minimal human intervention. The following is a proposed timeline
outlining the targets and milestones for my research.

1. Literature review: Months 1-4 (Done.)

• Review the literature regarding CL and improve my knowledge about deep
neural networks.

• Understand the knowledge about mobile sensing, embedded systems.

2. Initial exploration of CL in mobile sensing. Months 5-9 (Done.)

• Conduct the foundational research to identify the feasibility and applicability
of applying various CL methods in mobile sensing applications. (under review
at SEC ’21)

• Learn practical guidelines for applying CL in mobile sensing tasks on resource-
constrained devices.

• Propose a novel exemplar-based CL method called FastICARL. FastICARL
reduces the latency for the CL time and requires less storage than the original
iCaRL (published at INTERSPEECH ’21).

3. Implementation of existing works and further literature review: Months 10-12 (In
Progress.)

• Extensively review model compression literature, e.g., NAS, pruning, quantiza-
tion, weight sharing.
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• Implement some of the prior works to fully understand them and later use them
as baselines of my future work.

• Review meta-learning and meta CL literature.

• Implement representative meta CL works to use them as baselines.

4. Exploration of better compression techniques for CL systems of multiple heteroge-
neous networks: Months 13-18

• Start with applying the basic PQ to a single model to see if it retain the accuracy
and to what extent it can reduce a storage and memory footprint.

• Extend PQ to be applied to multiple models and evaluate the performance of
the PQ with respect to the accuracy, memory, storage footprint, and energy
consumption.

• Come up with optimization techniques based on PQ or on other compres-
sion techniques to further shrink the memory/storage footprint of multiple
heterogeneous models.

• Evaluate the optimized compression technique to what extent it can improve
upon the baseline methods in terms of performance and system aspects.

• Evaluate my method in various application scenarios. For example, when a user
wants to include new models in my weight sharing method, it can represent the
unseen models without learning from scratch.

5. Adaptive CL systems with minimal human intervention: Months 19-24

• Analyze the advantages and disadvantages of the current state-of-the-art meta
CL method (ANML).

• Extend the regularization-based meta CL framework to exemplar-based meta
CL to maximize the performance with some additional overheads on memory
and storage.

• Explore the possible optimizations based on quantization, pruning, and joint
optimization to reduce resource usages of the exemplar-based meta CL.

6. Combination of the new compression technique and Meta CL in the wild: Months
25-30

• Explore the possibility of combining my new compression technique and the
exemplar-based meta CL to enable continual update rapidly with less memory
and storage overhead in the context of multiple heterogeneous neural networks.
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• Conduct extensive evaluations of the advantages and disadvantages of the CL
system built with the two techniques in the wild.

7. Thesis writing: Months 31-36
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Appendix A

Exploring System Performance of
Continual Learning for Mobile and
Embedded Sensing Applications
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Abstract

Continual learning approaches help deep neural network models adapt and learn incre-
mentally by trying to solve catastrophic forgetting. However, whether these existing
approaches, applied traditionally to image-based tasks, work with the same efficacy to the
sequential time series data generated by mobile or embedded sensing systems remains an
unanswered question.

To address this void, we conduct the first comprehensive empirical study that quantifies
the performance of three predominant continual learning schemes (i.e., regularization,
replay, and replay with examples) on six datasets from three mobile and embedded sensing
applications in a range of scenarios having different learning complexities. More specifically,
we implement an end-to-end continual learning framework on edge devices. Then we
investigate the generalizability, trade-offs between performance, storage, computational
costs, and memory footprint of different continual learning methods.

Our findings suggest that replay with exemplars-based schemes such as iCaRL has the
best performance trade-offs, even in complex scenarios, at the expense of some storage
space (few MBs) for training examples (1% to 5%). We also demonstrate for the first
time that it is feasible and practical to run continual learning on the device with the tight
memory budget. In particular, the latency on two types of mobile and embedded devices
suggests that both incremental learning time (few seconds - 4 minutes) and training time
(1 - 75 minutes) across datasets are acceptable, as training could happen on the device
when the embedded device is charging thereby ensuring complete data privacy. Finally, we
present some guidelines for practitioners who want to apply a continual learning paradigm
for mobile sensing tasks.



A.1 Introduction

Deep learning has revolutionized the performance of various disciplines, including mobile
and embedded systems applications. This is particularly true for applications relying on
continuous streams of sensor data such as activity recognition [4], mental health, and
wellbeing [8], gesture recognition [6], tracking and localization [7]. However, a crucial
characteristic common to the above applications is the need for a trained model to adapt
to accommodate new classes and to a dynamically changing environment. In these settings,
the ability to continually learn [11], that is, to learn consecutive tasks without forgetting
how to perform previously learned tasks, becomes essential. Let us consider an example.
Alice has a deep learning model deployed on her smartphone for human activity recognition
(HAR) to recognize simple activities such as sitting, and standing. As time passes, the
model might want to learn new activities such as walking to be more beneficial to a very
active Alice. A static model will learn new activities but will fail to predict older activities
correctly due to catastrophic forgetting (CF) [13], i.e., the abrupt and near-complete loss
of knowledge obtained from previous tasks when the model learns new tasks. Continual
learning allows deep learning models to learn incrementally (adapt or accommodate new
classes/behaviors) and obviates the need to be trained every time from scratch, which
might waste useful resources on Alice’s device.

In practice, enabling deep learning models to continually learning is very challenging due
to the CF problem. Since CF was first identified in Multi-Layer Perceptrons (MLPs), many
researchers have proposed methods to mitigate it [52, 16, 17, 127, 55] and evaluate it using
small and large datasets [11, 12, 128]. However, the proposed methods are mainly evaluated
in the field of computer vision with MLPs or Convolutional Neural Networks (CNN) based
deep learning models. It is unclear whether these methods are viable in sensor-based
applications, where the modality of the data is significantly different from images, and
sequence information needs to be captured [9]. Moreover, most of the existing Incremental
Learning (IL)1 techniques [129] do not take into account the resource requirements of these
devices, which may make them inapplicable to embedded and mobile systems deployments.
There is a clear need to understand the resource consumption limitations of existing
continual learning methods to see if they are applicable to resource-constrained edge
platforms.

To address the aforementioned limitations of prior work, we conduct the first systematic
study to investigate the CF problem on mobile and embedded sensing applications using
various IL methods. First, we employ three datasets from the widely researched applica-
tion of Human Activity Recognition (HAR) [126] based on accelerometer, gyroscope, and
magnetometer data. Next, we include two datasets from Gesture Recognition (GR) [69]
based on surface electromyography (sEMG). We further incorporate an Emotion Recogni-

1In this work, we use continual learning (CL) and incremental learning (IL) interchangeably.
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tion (ER) dataset [20] based on speech among audio sensing tasks to make our results
generalizable to different modalities across diverse applications. Second, we examine
trade-offs of studied IL methods in terms of their performance, storage footprint, compu-
tational costs, and the peak memory limit to consider the feasibility and applicability of
the IL methods on mobile and embedded devices. To investigate the system limitations
imposed by different configurations of IL, we implemented the IL framework on two types of
devices with different specifications – an Nvidia Jetson Nano GPU (used in mobile robotics
and tablets) and a smartphone (One Plus 7 Pro) CPU – with respect to computational
costs, storage, and memory footprint.

Overall, the major contributions and findings of this paper are:

First, we conduct a systematic investigation of the CF problem on mobile and embed-
ded applications using six state-of-the-art IL methods falling under three paradigms:
regularization ((1) Elastic Weight Consolidation: EWC [16], (2) Synaptic Intelligence:
SI [47], and (3) Online EWC [48]), replay ((4) Learning without Forgetting: LwF [52]),
and replay with exemplars ((5) Incremental Classifier and Representation Learning:
iCaRL [17] and (6) Gradient Episodic Memory: GEM [55]). In addition, to make our
study generalizable across different modalities of data, we perform analysis on six datasets
of three different sensing applications (HAR, GR, and ER).

Second, to evaluate CF in real-life scenarios, we employ Sequential Learning Tasks
(SLTs), successively learning two or more sub-tasks D1, ..., Dk, instead of learning a single
task D [12]. Learning new tasks continuously becomes vital since the number of classes
(activities or users) and the environments of edge applications often change over time. We
adopt a class-incremental learning setup where each task contains distinct classes, which
fits well with practical application scenarios (see §A.3.1 for detail). Specifically, we try
three scenarios: adding only one class to a base classifier (simple), adding half of the
classes, N/2, to a base classifier at once (mildly complex), and a very practical (complex)
scenario where half of the classes, N/2, are added incrementally to a base classifier one by
one, where N is the total number of classes. Through extensive experiments, we find that
all IL methods perform well when presented with simple scenarios but fail in the complex
scenario, except for iCaRL. The main reason for iCaRL’s strong performance is its use of
exemplar samples. To the best of our knowledge, we are the first to train and implement
IL methods to run on mobile and embedded systems, with the aim to build an end-to-end
on-device continual learning system and to evaluate trade-offs of studied IL methods in
terms of their performance, storage, and computational costs, as well as the peak memory
usage.

Third, we find that iCaRL and GEM require a modest amount of storage, which seemingly
is not an issue on many modern devices as they support a large amount of storage (in
order of a few GBs). Even at a maximum number of stored exemplars (i.e., 20% - 40%
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of training samples), iCaRL and GEM require only 2 MB–115 MB. Besides, the average
IL time taken by EWC based algorithms varies from 39.5–1,160 seconds on Jetson Nano.
For all other algorithms, it ranged from 0.5–342 seconds on both Jetson Nano and a
smartphone. iCaRL, in particular, needs less than a minute on a smartphone to do IL on
a per-task basis and operates within a reasonable peak memory overhead (196–2,127 MB).
Our study also shows that simple deep learning architectures such as one and two-layer
long short-term memory (LSTM) [130] can be trained entirely on the smartphone, thereby
ensuring complete user privacy.

Finally, based on our findings, we present a series of lessons and guidelines to help
practitioners and researchers in their use of continual deep learning for mobile sensing
applications.

In addition to the above contributions, we adapt the experimental protocol proposed
in [12] which considers learning only two tasks. We extend this protocol so that it can
incorporate any number of tasks (D1, ..., Dk) in an incremental manner and identify the
best performing IL model by permutating a set of hyper-parameters and IL-method-specific
parameters (see §A.3.3 for detail). Finally, we believe that our work and findings open the
door to the use of continual learning in edge devices and applications.

A.2 Related Work

We begin by reviewing continual learning approaches and empirical studies to evaluate
them, followed by applications of deep learning in the mobile and edge sensing domain.

A.2.1 Continual Learning

Continual learning studies the ability to learn over time from a coming stream of data by
incorporating new knowledge while retaining previously learned experiences [15]. Continual
learning is also called incremental learning (IL) [17], lifelong learning [15], and sequential
learning [13]. In a continual learning setup, learning methods typically suffer from
CF [13, 14], That is, a learned model experiences performance degradation on previously
learned task(s) (e.g., task A) as information relevant to a new task (e.g., task B) is
incorporated. It is because the learned parameters of the network that are optimized to
perform well in task A (i.e., important weights to task A) are changed to maximize/minimize
the objective/loss of task B. In recent years, many researchers have focused on solving
the CF issue by proposing a range of IL approaches. The first group of approaches
is a regularization-based method [16] where regularization terms are added to the loss
function to minimize changes to important weights of a model for previous tasks to
prevent forgetting. Another group of approaches is a replay-based method [52] where
model parameters are updated for learning a representation by using training data of the
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currently available classes, which is different from replay with exemplars-based method
[17, 55] where updating the model requires training data from the new class and also few
training samples from earlier classes.

The proposed IL methods to solve CF are empirically evaluated using small and large
datasets [11, 12]. However, these empirical studies either adopt only a few methods [11, 12]
or neglect resource constraints of mobile and embedded devices with respect to storage
and latency [12]. To fill this gap, we perform a systematic study on six most cited (or
state-of-the-art) IL methods from three representative categories of IL approaches with
three continual learning scenarios with different difficulties. Also, we conduct the first
comprehensive study of generalizability and trade-offs between performance, storage, and
computational costs among the studied IL methods on mobile and embedded devices.

A.2.2 Deep Learning for Mobile Sensing Systems

Deep learning is increasingly being applied in mobile and embedded systems as it achieves
state-of-the-art performances on many sensing applications such as activity recognition [18,
56], gesture recognition [57], and audio sensing [58]. [18] experimented with three variants
of deep learning approaches such as feed-forward, convolutional, and recurrent neural
networks on HAR datasets, and present guidelines for training neural networks. [61]
proposed the DeepConvLSTM model in which convolutional layers extract the features
from raw IMU data, and Long-Short Term Memory (LSTM) recurrent layers capture
temporal dynamics of feature activations to improve the performance of HAR.

Deep neural networks have also helped applications that need to recognize hand gestures
using surface electromyographic (sEMG) signals generated during muscle contractions [64,
19]. [69] proposed a self-re-calibrating framework which can be updated to maintain the
model’s performance so that it does not need users’ additional labels for re-training. [64]
used sEMG of the forearm to classify finger touches with their proposed neural architecture
combining convolutional, feed-forward, and LSTM layers.

Many works have investigated using deep learning for audio sensing tasks including
Emotion Recognition, Speaker Identification [131], and Keyword Spotting. [78] proposed
a deep learning modeling and optimization framework that specifically targets various
audio sensing tasks in resource-constrained embedded systems. Keyword recognition [76]
achieved 45% relative improvement with a deep learning model compared to a competitive
Hidden Markov Model-based system.

In contrast to these works, we investigate whether current IL methods can enable a practical
continual learning system for mobile and embedded sensing applications on-device and
what the performance implications of such systems are. In addition, to fully understand
the issue of CF in mobile sensing where the modality of the data is significantly different
from image datasets [9] with which the IL methods are typically evaluated, we implement
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...
Activity	M+1
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Figure A.1: Overview of our continual learning system.

an end-to-end continual learning framework that evaluates various IL methods in three
embedded sensing applications (e.g., HAR, GR, and ER) with different data modalities
(e.g., accelerometer, sEMG, and speech).

A.3 Continual Learning for Mobile and Embedded

Sensing Framework

We now present our framework to comprehensively evaluate the performance of various IL
methods for three mobile and embedded applications (HAR, GR, and ER). We first explain
the continual learning setup and three scenarios adopted in our experiments (§A.3.1).
Then, we present six IL methods evaluated in this work (§A.3.2). We then describe the
hyper-parameters of the LSTM based deep learning model and the different IL methods
(§A.3.3). After that, we propose our novel IL model training process in §A.3.4. Next, we
describe the datasets used in this study (§B.3.1). Finally, we provide brief details about
our implementation (§A.3.5)

A.3.1 Continual Learning Setup and Three Scenarios

In this work, we focus on Sequential Learning Tasks (SLTs) from the mobile and embedded
systems domain where new classes can emerge over time. Thus, the learning model has to
continuously learn to accommodate new classes without CF, as would happen in real-life
scenarios. Learning tasks of this type, called SLTs, indicates that a model continuously
learns two or more tasks D1, ..., Dk, one after another instead of learning a single task
D once [12]. Figure A.1 shows an overview of our continual learning system for sensing
applications using HAR as an illustrative example. A user starts with a model containing
a fixed set of classes on their devices which is then incrementally updated over time as
new classes arrives.

We introduce three scenarios of different levels of difficulties for models to learn continuously
(from easy to difficult scenarios). First of all, inspired by Pfulb et al. [12], we adopt the
SLTs consisting of two tasks: D1 and D2. Hence, Scenario 1 consists of two tasks, where
the first task contains the N − 1 classes, and the second task contains the other one class
(N is the total number of classes). Scenario 2 includes two tasks where the first task
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contains half of the classes, N/2, and the second task contains the remainder of the classes.
Finally, Scenario 3 deals with a more realistic situation where many tasks are to be learned
sequentially [11]. In the third scenario, we first train a model in the first task with N/2
classes and then incrementally train the model by adding subsequent tasks with one class
(essentially N/2 + 1 tasks). Unlike the first scenario (which has only N different cases of
task permutations), it is not practical to consider every random permutation of classes to
be included in different tasks for the second and third scenarios. Hence, we consider ten
variations by randomly choosing classes in each task for the last two scenarios. Note that
each task consists of disjoint groups of classes as we adopt class-incremental learning [132].

A.3.2 Incremental Learning Methods

As described in the related work section, various methods exist that can mitigate CF in
IL. We describe them in depth as they form the basis of our exploration. To mitigate
CF, there exist three main categories of IL approaches: (1) Regularization, (2) Replay,
and (3) Replay with Exemplars. We select at least one representative method for each of
the above categories. These methods are the state of the art methods (most cited) for IL
and are most often used in machine learning papers for comparison. We now describe the
employed methods.

LSTMs [130]: LSTMs are a type of recurrent neural networks widely used for a sequence
classifier in many applications, specifically for time-series data. We use LSTMs as a base
neural network.

EWC [16]: Elastic Weight Consolidation (EWC) is a regularization based method which
adds a penalty to regular loss function when learning a new task (i-th task), i.e.,

L(θ) = Li(θ) + λ/2
i−1∑
j=0

Fj(Θi −Θ∗j)
2 (A.1)

where L(θ) is the total loss, θ is the network’s parameters, Li(θ) is the loss for the new
task, and Θ∗j are the important parameters of all previous tasks. λ is a hyperparameter
that controls how much importance should be given to previous tasks compared to the
new task. F is the Fisher matrix used to constrain the parameters important to previously
learned tasks to stay close to their old values to retain the knowledge of previous tasks
and to be able to learn new tasks simultaneously.

Online EWC [48]: It is a variation of EWC method where the loss function is represented
as,

L(θ) = Li(θ) + λ/2(Θi −Θ∗i−1)
2

i−1∑
j=0

Fj (A.2)
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Online EWC eliminates the need to store mean and fisher matrices for each previous task
and only requires the latest mean and running sum of fisher matrices to calculate the
current task’s total loss.

SI [47]: It is another regularization method which is similar to EWC where the loss
function is calculated in the following way,

L(θ) = Li(θ) + λ
∑
k

Ωi
k(θ∗k − θk)2 (A.3)

where k is the subscript for the parameters of the models, λ is the strength parameter, θ∗k is
the parameter value at the end of the previous task, and Ωi

k represents the per-parameter
regularization strength taking into account all previous tasks, calculated as:

i−1∑
j=0

wj
k

(4θjk)2 + ε
(A.4)

parameter distance 4θjk determines how much a parameter moved between tasks during
the entire trajectory of training. ε is the dampening parameter to prevent division by zero
errors. The main difference between SI and EWC is that SI weights importance, wk, is
continuously updated online during training. In contrast, in EWC, the Fisher matrices
(weights importance) are calculated at the end of each task.

LwF [52]: This method relies on adding loss for the replayed data to the loss of the current
task. The replayed data is the input data of the current task which is labeled using the
model trained on the previous tasks to generate target probabilities. The ultimate aim of
the replayed data is to match the probabilities predicted by the model being trained to
the target probabilities (a form of data distillation) and is termed as the loss for replayed
data.

iCaRL [17]: Incremental Classifier and Representation Learning (iCaRL) store data
from previous tasks (i.e., exemplars) to alleviate the CF problem. The exemplars are a
representative set of the small number of samples from a distribution, and those that can
approximate the average feature vector over all training examples are selected as exemplars
(based on herding [133]). The classification is done based on a nearest-class-mean (NCM)
rule using features extracted from the deep learning model, where the class means are
calculated from the stored examples. When new tasks (classes) arrive, iCaRL creates a new
training set combining the exemplars from all the previous tasks with the data samples
of the new task. Then, the model parameters are updated by minimizing a loss function
which encourages the model to output the correct class for the new task (classification
loss) and to reproduce the scores stored in the previous step for the old tasks (distillation
loss) using data samples from the new training set.
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GEM [55]: Gradient Episodic Memory (GEM) stores exemplars from the previous tasks
like iCaRL and solves CF as a constrained optimization problem. A parameter update
while doing IL is made depending on whether it will lead to an increase in loss for the
previous tasks. This is calculated by computing the angle between loss gradient vectors of
stored examples and the proposed parameter update. If the calculation suggests no loss,
then the update is done straight away. Otherwise, the parameter is updated by projecting
gradient in such a way that it will incur a minimal loss for the previous tasks.

Our Contribution: It is worth noting that the above six IL methods are known in the
machine learning literature from a theoretical point of view. Yet, they are not off-the-
shelf methods that can be simply used to any dataset to enable continual learning. As
will be shown in Section A.5, there exist many factors affecting the performance and
applicability of the IL methods in real-world deployment such as the complexity of the
continual learning scenario, resource availability of mobile and embedded devices, and
choice of hyper-parameters. Thus, a distinctive contribution of our work is a comprehensive
evaluation and comparison study of the IL methods in diverse sensing applications and
is to develop an end-to-end and on-device IL framework that can investigate trade-offs
between performance, storage requirements, and latency.

A.3.3 Characterization of Hyper-parameters

We categorize hyper-parameters into three types and IL-method-specific parameters. First
of all, we use architectural hyper-parameters which cannot be changed when learning
new tasks, e.g., the number of hidden layers L and its size S. We then use learning and
regularization hyper-parameters which can be adaptable when learning new tasks. For
example, a learning rate ε and λ term in L2-regularization can be modified during training
over time. We denote the set of hyper-parameters as P .

IL-method-specific parameters: Each IL method has method-specific parameters to
control the behaviors of the model. For example, in regularization-based methods [16,
134, 47, 52], importance parameter λ is often utilized to modulate how much importance
a model puts on previous tasks or a current task. The importance parameter can be
adaptable while learning new tasks in our IL model training process (Algorithm 1). In
addition, in replay with exemplars-based methods [17, 55], the size of the storage budget
is used to balance between storage requirements and the performance of a model. Since
the budget size is difficult to be adaptable after completion of the first task, it is given as
an input in our experimental protocol (Algorithm 1).

Hyper-parameter setting for experiments: We first fix several hyper-parameters as
default values. We set dropout rates for all tasks as 0.2 and 0.5 in input and hidden
layers of a model, respectively [135] and a batch size of 32 with Adam optimizer set to
a default learning rate of 0.001 for task 1 (D1). After that, we vary hyper-parameters
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Algorithm 1: IL model training process to determine the best model by incrementally
learning tasks up to task k

Input: Tasks D1, ..., Dk, model m, budget B, epochs E
Input: The number of hidden layers L, Hidden layer size S
Input: IL-method-specific parameters PIL, learning rate ε
Output: The best model with hyper-parameter vector p∗

1 for p ∈ (L ∪ S) do
2 for t = 1, E do
3 Train model m1 using training set of D1 with p
4 Test model m1 using test set of D1

5 Store performance q1,t
6 Update the model m1,p∗ with max q1
7 for p ∈ (PIL ∪ ε) do
8 Initialize model m2 with m1,p∗

9 for j = 2, k do
10 for t = 1, E do
11 Train model m2 using training set of Dj with p

12 Test model m2 using test set of ∪jl=1Dl

13 Store performance qj,t
14 Update the model mk,p∗ with max qk

for all models in each dataset. Specifically, in the task 1 (D1), we vary architectural
hyper-parameters as follows: L ⊂ {1, 2}, S ⊂ {32, 64}. In subsequent tasks from task 2 to
k (D2, ..., Dk), we fix architectural hyper-parameters but vary adaptable hyper-parameters
and IL-method-specific parameters as follows: (1) ε ⊂ {0.001, 0.0001} for all models, (2)
λ ⊂ {1, 10, 102, 103, 104, 105, 106} for both EWC and Online EWC, (3) γ ⊂ {0.5, 1.0} for
Online EWC, (4) c ⊂ {0.2, 0.4, 0.6, 0.8, 1.0} for SI. We denote varying IL-method-specific
parameters as PIL. For replay-based methods, the losses of the current and replayed data
are weighted according to the number of tasks a model has learned so far by following [132].
Note that budget size, B ⊂ {1%, 5%, 10%, 20%}, is given as an input and fixed for replay
with exemplars-based methods while other hyper-parameters are permuted. Since the
total number of samples for each dataset is different, we use a ratio from the total training
samples rather than a fixed number of samples for the budget size.

A.3.4 Model Training Process

We extend protocol [12] to incorporate multiple tasks up to task k (D1, ..., Dk) in an
incremental manner based on our characterization of hyper-parameters and IL-method-
specific parameters. Algorithm 1 describes our protocol in which we only utilize training
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data of a current task j (≤ k) for model learning and test data of previously learned tasks
up to task j for evaluation.

Given an SLT consisting of D1, D2, ..., Dk and a model m, the goal is to find a vector of
hyper-parameters p∗ which produces the best performance q after incrementally training
all tasks up to task k. For the first step, we find the best performing hyper-parameters
in task 1 (D1) by searching among the set of architectural hyper-parameters (lines 1-5
in Algorithm 1) and update the model mp∗ with the found hyper-parameters (line 6).
The next step is to find the best model by searching among the set of learning hyper-
parameters and IL-method-specific parameters in subsequent tasks from task 2 to k (lines
7-13). Finally, we select the best model which shows the highest performance based on test
sets after incrementally trained up to task k (line 14). Note that to facilitate the extensive
experiments performed in our study and to make a fair comparison among the IL methods
(Section A.5), we first identify the best architectural hyper-parameter (from L ⊂ {1, 2}
and S ⊂ {32, 64}) and then use the found hyper-parameter across the different IL methods.
The final LSTM architecture we used for each dataset are reported in Table A.1.

A.3.5 Implementation

We implemented our continual learning framework on Nvidia Jetson Nano and One Plus
Pro smartphone platforms. All the IL algorithms were explored on Nano GPU, and we
used PyTorch 1.1 to implement the framework. Keeping in mind that Scenario 3 is the
most practical continual learning scenario and iCaRL is the best performing IL approach,
we only implemented iCaRL for Scenario 3 on the smartphone’s CPU (as an Android app)
using the DeepLearning4j library. The smartphone app size is 134 MB. We choose CPU
on the smartphone as it provides an upper bound on the performance of any system and
is more challenging to implement. We envisage that if a system can work (or at least
feasible) on a CPU, then it would be much easier and faster to run similar systems on
accelerators such as GPU. When working on a dataset, we first loaded the training data
pertaining to all the tasks in the memory to make the continual learning process work
faster. As a limited amount of memory is allocated to each Android app, we set large heap
property in the app to True to use larger heaps for our app. We still encountered memory
issues, especially when working with large datasets such as Skoda, which we solved by
using memory-mapped files.

In addition, we employ a weighted F1-score which is more resilient to class imbalances as
the employed datasets (see §B.3.1 for details) are not balanced [136, 18]. As in [137], we
applied a weighted loss to all evaluated methods by estimating the inverse class distribution
which gives more importance to the loss of a class with fewer samples. Also, as deep
learning models can overfit to small datasets such as EmotionSense, with our framework,
we experimented with shallow and deep neural network architectures and found that deep
architectures show marginal improvement over shallow architectures, indicating that the
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Table A.1: Overview of the employed datasets.

Application Dataset Dimension # Train Data # Test Data # Classes Layer/Size

HAR
HHAR 20 × 120 59,403 7,721 6 2/64

PAMAP2 33 × 52 35,263 5,209 12 1/64
Skoda 33 × 60 10,047 1,193 10 1/64

GR
Ninapro (Per Subject) 40 × 12 3,118 639 10 1/64

Ninapro (LOUO) 40 × 12 30,488 3,759 10 1/64

ER EmotionSense 20 × 24 2,011 224 14 2/64

overfitting is not an issue.

A.4 Experimental Setup

Before we present the findings of this work in Section A.5, we describe experimental setup
for conducting a comprehensive evaluation of three continual learning schemes in mobile
and embedded sensing applications. We first describe six datasets in three different sensing
applications (§B.3.1) and evaluation metrics adopted for systematic comparison of the IL
techniques and their trade-offs between system aspects (e.g., storage and computational
costs) (§A.4.2).

A.4.1 Datasets

We focus on three sensing applications (e.g., HAR, GR, and ER) as they are some of the
most popular applications in the mobile sensing. Table A.1 shows the overview of the
employed datasets.

Human Activity Recognition (HAR)

For the HAR application, we used three datasets: (1) HHAR [136], (2) PAMAP2 [138],
and (3) Skoda [139]. These datasets contain many real-life activities (e.g., walking, sitting,
and cycling) obtained using Inertial Motion Units (IMUs), which contain accelerometer,
gyroscope, and magnetometer data of mobile and wearable devices. We next present the
detailed summaries of the three datasets.

HHAR: This dataset considers six different daily activities of users The data was recorded
from nine participants, where they followed a scripted set of activities with eight smart-
phones and four smartwatches of different brands and models. Having various devices
for recording makes HHAR an excellent benchmark to study heterogeneity of HAR (i.e.,
sensor biases, sampling rate heterogeneity, and sampling rate instability). We follow
the preprocessing steps as proposed by Yao et al. [140]. Raw measurements of both
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accelerometer and gyroscope are segmented into 5-second samples. Each sample is divided
into time intervals of 0.25s. After that, we apply a Fourier transform to each time interval.
It produces d × 2f dimensional vectors per time interval, where d is the dimension for
each measurement and f is the frequency with magnitude and phase pairs, resulting in
120 dimensions. We adopt leave-one-user-out (LOUO) for evaluation [140]. One user (i.e.,
the first participant) is used for testing, and the remaining users are left for training.

PAMAP2: In this dataset, nine subjects carried out various daily living activities and
sportive exercises. IMU data (accelerometer, gyroscope, magnetometer), heart rate, and
temperature data were recorded from body-worn sensors attached to the hand, chest, and
ankle. The resulting dataset has 52 dimensions, and more than 10 hours of data were
collected. We follow a preprocessing protocol used by Hammerla et al. [18]. The sensor
data are downsampled to 33Hz. After that, all samples are normalized to zero mean and
unit variance. Also, to be consistent with the previous works [18, 4, 141], we use runs 1
and 2 from the sixth participant for testing and remaining data for training.

Skoda: The Skoda dataset contains activities of assembly-line workers in a manufacturing
scenario. One subject wore 20 3D accelerometers on both arms. Following the preprocessing
steps [61, 4], we employ raw and calibrated data from ten accelerometers placed on the
right arm, resulting in input data of 60 dimensions. The data are downsampled to 33Hz
and normalized to zero mean and unit variance. For experiments, the last 10% of each
class is used as the test data and the remaining as the training data. Note that Skoda
consists of one subject, i.e., subject dependent evaluation.

Gesture Recognition (GR)

We employ the Non Invasive Adaptive Prosthetics (Ninapro) database [142] for the GR
application in our experiments as it consists of surface electromyography (sEMG) signals
and thus can provide different sensor modalities than IMU sensors present in HAR datasets.

Ninapro (Per Subject): The Ninapro database is widely used in research on the hand
movement recognition application. We employ Ninapro Database2 (DB2) in this study.
It includes sEMG data recordings from 40 subjects while performing several repetitive
gestures such as wrist movements, grasping and functional movements, and force patterns.
Following, Li et al. [143], we select ten types of hand gestures commonly used in daily life.
After that, we downsample the sEMG data to 200 Hz and normalize them to zero mean
and unit variance. We used a sliding window size of 200 ms with a 50% overlap [69, 35].
We select a subject who has the most amount of data samples for subject dependent
(i.e., per subject) evaluation. After that, we use the fifth repetition for a test set and the
remainder for training.

Ninapro (LOUO): To have consistent evaluation with the HAR application we adopt
LOUO evaluation for the GR application using the Ninapro dataset. We select the top
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ten subjects having more data samples than others. After that, we use a subject with the
least data samples for testing and the remainders for training. The preprocessing steps
are the same as in Ninapro (Per Subject).

Audio Sensing Task

We pick Emotion Recognition (ER) since it is one of the most widely adopted audio
sensing tasks. We employ the EmotionSense dataset [20] which was collected by recording
human participants’ emotions as well as proximity and patterns of conversation using an
off-the-shelf smartphone. This dataset has been used in multiple studies to understand
the correlation and impact of interactions and activities on the emotions and behavior of
individuals in various settings [144][58][8].

EmotionSense: The EmotionSense dataset contains audio signals which represent 14
different emotions. In the EmotionSense dataset, each measurement corresponding to a
particular emotion (or class) is based on a 5-second context window. Following Georgiev
et al. [78], we extract 24 log filter banks [145] from each audio frame over a time window
of 30 ms with 10 ms stride. Each sample contains 500*24 = 12,000 features where 1–24
features are filter banks from the first 10 ms, and 25–48 features are filter banks for the
next 10 ms and so on. After that, as our preprocessing steps, we downsample each sample
measurement by averaging corresponding 24 filter banks of every 250 ms (or 25 consecutive
windows) without any overlap to reduce the length of the input sequence for a learned
neural network. We normalize each window to zero mean and unit variance.

A.4.2 Evaluation Metrics

We consider how much an IL method forgets previous tasks and learns new tasks after
it was trained from task 1 to k to assess the actual performance of IL methods [49] by
considering the following metrics.

Average Performance Measure (A): We denote the performance measure of a model
on the j-th task (j ≤ k) as ak,j ∈ [0, 1] after the model is trained from task 1 to k. The
average performance measure at task k is defined as follows:

Ak =
1

k

k∑
j=1

ak,j (A.5)

The output space consists of ∪kj=1y
j, and ak,j is based on a weighted F1-score in this

work. Note that ak,j can be used to indicate an accuracy, proportion of correctly classified
activities or gestures.

Forgetting Measure (F): The forgetting measure provides an estimate of how much a
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model forgets about the task given its present state. The forgetting for the j-th task after
the model has been trained up to task k > j can be quantified as:

fk
j = max

l∈1,...,k−1
al,j − ak,j, ∀j < k (A.6)

The average forgetting at k-th task is denoted as Fk = 1
k−1
∑k−1

j=1 f
k
j by normalizing the

number of tasks seen previously. The lower the Fk, the less forgetting on previous tasks.

Intransigence Measure (I): Intransigence is defined as the inability of a model to learn
new tasks. To quantify the inability to learn, the joint model, often considered upper
bound, which has access to all the datasets seen so far (∪kl=1Dl) is compared and its
performance is denoted as a∗k. We then denote the intransigence for the k-th task as:

Ik = a∗k − ak,k (A.7)

where ak,k represents the performance of a model on the k-th task trained up to task k.
Lower Ik implies that a model performs as close as a joint model or performs even better
than the joint model when intransigence is negative (Ik < 0). Note that we use ak,k and
Ik as the main performance indicators of a model since we are interested in the current
performance of the model on all learned tasks from 1 to k.

Note that in addition to metrics mentioned above, we also report storage and latency
required to execute each IL method.

A.5 Findings

We now present the results of our evaluation. Firstly, we compare the performances of
different IL methods on HAR, GR, and ER tasks using two basic scenarios (Scenario 1
and 2) in §A.5.1. Then, we study the performance of IL methods for Scenario 3 in §A.5.2.
We examine the generalizability of IL methods across different datasets (§A.5.3). Then,
we discuss the trade-offs of IL methods with respect to the storage, computational costs,
and memory footprint. (§A.5.4). Finally, in §A.5.5, we investigate the effect of iCaRL
specific parameters on the performance.

A.5.1 Performance on Simple and Mildly Difficult Tasks

We show the best average weighted F1-scores across all runs for different IL methods for
Scenario 1 and 2 for different datasets in Figure A.2 and Figure A.3, respectively. For
HAR and GR applications, the results of iCaRL/GEM with the budget size of 20% are
shown in Figure A.2 and Figure A.3 since the models with the budget size of 20% show
the best performance. Then, for the ER application, the results of iCaRL/GEM with the
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budget size of 40% are shown since the EmotionSense dataset has the least number of
training samples, requiring more budget size in ER than the other two applications. Joint
refers to the case when training data is available for all the classes from the beginning. It
is a classic case to train a model with all data at once and serves as the upper bound in
many cases. None refers to the case when no IL method is applied to solve CF. The white
part in the figure shows performance on Task 1, and the grey part shows performance for
Task 2.

The results show that without any IL method (None), the performance drops sharply as
soon as a new task is encountered. The decline in performance is as drastic as 60% in both
scenarios. iCaRL provides the best performance in Scenario 1, which stays very close to
the performance obtained with the joint model. It is because iCaRL stores representative
exemplars and relies on a nearest-class-mean (NCM) rule that is robust against changes in
the data representation [17]. In fact, all the IL methods effectively solve the CF problem
and achieve comparable performance to the joint model (between 5% and 15%) after only
running for a few epochs (5 or less in many cases). One can conclude that, in general, the
existing IL methods we analyzed can solve the CF issue on mobile and embedded sensing
applications for simple scenarios.

However, the same cannot be said for the performance in Scenario 2. Except iCaRL, none
of the other methods seems to solve the CF issue for the mildly complex scenario (i.e.,
Scenario 2). The performance drop is up to 60% when the performances between IL
methods and the joint model are compared. iCaRL remains the best performing method
with its weighted F1-score close to that of the joint model (within 10%). GEM performs
the second-best (within few epochs) on HAR datasets while EWC performs well for GR
and ER datasets. Although GEM is a replay with exemplars-based approach like iCaRL,
it never matches the performance of iCaRL due to its reliance on using gradients and
not the actual examples themselves. Another reason might be that iCaRL selects best
examples to be stored based on herding (a sort of prioritization), while GEM employs
selecting examples randomly which can be less informative. A regularization-based method
such as SI and a replay only approach such as LwF perform poorly across all datasets.
The weighted F1-score degrades roughly 40–50% of what can be achieved by the joint
model. As indicated by [146], the performance of LwF significantly decreases when the
model learns a sequence of tasks drawn from different distributions. In other words, when
tasks learned by LwF are not sufficiently related, enforcing the new model to give similar
outputs for the old task may hurt the model’s performance. SI relies on the weight changes
in a batch gradient descent which can overestimate the importance of the weights and
thereby leads to lower performance.

Note that iCaRL employs a different way (i.e., NCM rule) to classify data samples (perform
inference) than other methods (including None and Joint) which use cross-entropy based
classification. Also, for GEM, it minimizes the loss on the current task by using inequality
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Figure A.2: The performance comparison of the five IL methods including two baselines
in Scenario 1 on each dataset.

constraints, avoiding its increase but allowing its decrease. Therefore, iCaRL and GEM
can obtain different weighted F1-scores than the other methods in task 1. Otherwise,
ideally one would assume all methods (e.g., None, EWC, SI, LwF in our study) to get the
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Figure A.3: Performance comparison in Scenario 2.

same performance in the first task as it only involves learning a baseline LSTM model
without any IL. Also worth mentioning is that initially (especially task 1) IL methods can
achieve higher weighted F1-scores than the joint model. It is because their performance is
based on classifying the smaller number of classes than the joint model, where all classes
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need to be classified from the first epoch.

A.5.2 Performance on Many Sequential Tasks

Figure A.4 shows results for Scenario 3. Recall that Scenario 3 presents the case when
classes are added one by one to an already existing deep learning model, which will happen
in real-life scenarios and is the most challenging task for any IL method. Note that this
graph is shown differently than the graphs for Scenario 1 and 2 (epoch based) as in epoch
based graph, we would have only two data points to show as there were only two tasks.
In Scenario 3 the number of tasks will be N/2 + 1 for N classes. Without the IL method
(None), CF happens, and the weighted F1-score almost always lies between 0%–10%.
iCaRL is the best method and appears to solve the CF issue for the challenging third
scenario. Its performance is nearly equal to the joint model in most of the cases. All other
methods do not solve the CF issue, and the performance suffers severely as more tasks are
added to the system especially with LwF and SI.

A.5.3 Generalization

Table A.2 shows the results in a summarized way for all the datasets and IL methods
evaluated in our study. Ak refers to average performance on all tasks while ak,k shows the
weighted F1-score at the end of learning all tasks. Fk tells us how good an IL method
is in retaining old knowledge about previous tasks. Whereas Ik means how much an IL
method is good at learning new tasks. Note that the higher the values of Ak and ak,k, the
better the model is. However, for Fk and Ik, a low value indicates a better model since
low Fk and Ik means that the model forgets knowledge of previous tasks less and performs
as close as a joint model, respectively. iCaRL is one of the best-performing methods on
all metrics across all datasets. iCaRL can learn new classes (tasks) while retaining old
knowledge and maintain high performance even in the most challenging scenario. Given
that small errors are allowed when performing HAR, GR and ER, iCaRL alleviates the
issue of CF to a large extent. The same is not true for all other IL methods. Although
LwF allows previous knowledge to be largely retained (low F value), it does not learn
new tasks easily and thus has low performance in general. SI is neither good at learning
new tasks (high I) nor at remembering old knowledge (high F ). EWC and online EWC
offer a decent alternative to iCaRL without needing extra storage on-device but at the
expense of lower performance than iCaRL. The overall takeaway is that iCaRL can enable
a system to learn incrementally (continuously) in the mobile and embedded sensing domain
(if storage is not such a constraint on a device).

37



1 2 3 4
Task

0.0

0.2

0.4

0.6

0.8

1.0
W

ei
gh

te
d 

F1

(a) HHAR

1 2 3 4 5 6 7
Task

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

(b) PAMAP2

1 2 3 4 5 6
Task

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

(c) Skoda

1 2 3 4 5 6
Task

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

(d) Ninapro (Per Subject)

1 2 3 4 5 6
Task

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

(e) Ninapro (LOUO)

1 2 3 4 5 6 7 8
Task

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

(f) EmotionSense

1 2 3 4
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Joint
None

EWC
Online EWC

SI
LwF

iCaRL
GEM

Figure A.4: The performance comparison in Scenario 3. All reported results are averaged
over 10 trials, and standard-error intervals are depicted.

38



Table A.2: Average performance of different methods in all scenarios on HAR, GR, and
ER.

Scenario Methods HAR GR ER

Ak Fk ak,k Ik Ak Fk ak,k Ik Ak Fk ak,k Ik

1

None 0.55 0.35 0.54 0.36 0.22 0.29 0.20 0.32 0.47 0.11 0.44 0.16
EWC 0.88 0.01 0.86 0.03 0.49 0.01 0.47 0.05 0.60 0.01 0.58 0.03

SI 0.85 0.03 0.812 0.07 0.45 0.04 0.42 0.10 0.57 0.01 0.54 0.07
LwF 0.84 0.02 0.79 0.10 0.47 0.02 0.44 0.09 0.57 0.01 0.54 0.07

iCaRL 0.89 0.01 0.88 0.01 0.51 0.01 0.49 0.03 0.57 0.02 0.56 0.05
GEM 0.88 0.01 0.87 0.02 0.46 0.03 0.43 0.09 0.57 0.01 0.54 0.06

2

None 0.30 0.76 0.41 0.48 0.20 0.48 0.23 0.29 0.27 0.45 0.27 0.34
EWC 0.77 0.06 0.65 0.24 0.47 0.06 0.35 0.17 0.55 0.01 0.39 0.22

SI 0.64 0.26 0.60 0.29 0.31 0.31 0.29 0.23 0.38 0.27 0.32 0.29
LwF 0.70 0.03 0.48 0.41 0.45 0.06 0.31 0.21 0.52 0.04 0.35 0.26

iCaRL 0.89 0.05 0.86 0.03 0.53 0.09 0.51 0.02 0.57 0.07 0.53 0.08
GEM 0.77 0.13 0.71 0.18 0.39 0.19 0.31 0.21 0.51 0.08 0.37 0.24

3

None 0.22 0.21 0.10 0.79 0.09 0.17 0.05 0.48 0.18 0.16 0.12 0.49
EWC 0.75 0.01 0.56 0.34 0.44 0.01 0.31 0.21 0.46 0.01 0.30 0.49

Online EWC 0.72 0.03 0.59 0.30 0.44 0.01 0.30 0.22 0.45 0.01 0.30 0.31
SI 0.59 0.10 0.42 0.47 0.32 0.07 0.22 0.31 0.42 0.02 0.24 0.36

LwF 0.53 0.06 0.34 0.55 0.20 0.08 0.12 0.40 0.29 0.11 0.18 0.43
iCaRL 0.86 0.01 0.79 0.10 0.53 0.01 0.45 0.07 0.62 0.12 0.48 0.13
GEM 0.70 0.07 0.57 0.32 0.33 0.08 0.22 0.31 0.33 0.02 0.16 0.44

- Joint - - 0.89 - - - 0.52 - - - 0.61 -

A.5.4 Storage, Latency, and Memory Footprint

Storage: We report the storage overhead of each IL method, as shown in Table A.3. We
first specify the mathematical formulas used to calculate the overall storage requirements of
each IL method to show how much storage the IL method needs with respect to the number
of tasks (T ) added, the model parameters (M), and the budget size (B). This point would
help practitioners and researchers easily understand how much storage overhead occurs
when they want to deploy their models with a particular IL method. First of all, LwF
requires no extra storage other than the storage needed to store the model parameters
(M). Then, SI requires a running estimate (wk), the cumulative importance measures
(Ωi

k), and reference weights (θ∗k) of importance weights of the current task. EWC stores
fisher matrices and means for each task. Unlike EWC, Online EWC is only required to
store one fisher matrix and running means across tasks. Thus, the required storage for
Online EWC does not increase as the number of learned tasks increases. Similar to LwF,
iCaRL also requires the previous task model for knowledge distillation. For GEM, it stores
the gradient of the exemplar set for each learned task. As both iCaRL and GEM rely on
stored examples, their storage demands are mainly driven by the number of examples to
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Table A.3: Storage requirements of IL methods. M refers to the number of model
parameters, T represents number of tasks and B is the storage budget.

Category Method Required Storage

Reg-based
EWC 2×M× T

Online EWC 2×M
SI 3×M

Replay-based LwF M

Replay+Exemplars
iCaRL M+ B
GEM T ×M+ B

Table A.4: Storage requirements of IL methods for all datasets - Scenario 3. Units are
measured in MB.

IL Method HHAR PAMAP2 Skoda Ninapro
(Per
Subject)

Ninapro
(LOUO)

EmotionSense

EWC 2.601 3.599 3.177 2.587 2.587 3.663
Online EWC 0.650 0.514 0.529 0.431 0.431 0.458

SI 0.975 0.771 0.794 0.647 0.647 0.687
LwF 0.325 0.257 0.265 0.216 0.216 0.229

iCaRL (1%) 5.990 2.676 1.051 0.270 0.805 0.257
iCaRL (5%) 28.838 12.341 4.187 0.512 3.190 0.407
iCaRL (10%) 57.350 24.421 8.179 0.805 6.179 0.607
iCaRL (20%) 114.374 48.658 16.162 1.410 12.141 0.981
iCaRL (40%) - - - - - 1.755
GEM (1%) 6.989 4.205 2.350 1.351 1.884 1.862
GEM (5%) 29.817 13.874 5.537 1.583 4.278 2.016
GEM (10%) 58.372 25.996 9.532 1.884 7.274 2.217
GEM (20%) 115.444 50.240 17.476 2.485 13.266 2.603
GEM (40%) - - - - - 3.374

be stored (i.e., budget size, B).

Numerical model sizes (i.e., M+ B) are shown in Table A.4 for all the employed datasets
in Scenario 3. Note that we do not add tables containing the results of Scenario1 and 2
due to the page limit. However, by reporting the results of Scenario 3 where the storage
requirements of various IL methods are greater than or equal to those of Scenario 1 and
2, we aim to present the upper bound of the required storage. Besides, the reported
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numerical sizes of storage requirements in Table A.4 are based on IL methods with the
largest model in our experiments (i.e., number of LSTM layers (L = 2) and the number
of hidden units (S = 64)) to capture the upper bound to practically operate IL methods
on embedded and mobile devices. Here we take the Skoda dataset to further explain our
findings as it represents an ideal use case scenario where IL methods need to be applied
to personal mobile devices (single-user scenario with modest dataset size). In the Skoda
dataset, replay with exemplars methods such as iCaRL and GEM requires at most around
17 MB, and other IL methods have even smaller storage requirements. For EmotionSense
dataset where we use up to 40% budget, iCaRL needs less than 2 MB, and GEM needs
less than 3.4 MB at most. Even with the largest dataset of HHAR in our experiments,
the storage requirements are constrained within less than about 115 MB, which falls well
within the storage capacity of modern embedded devices and smartphones. Many modern
mobile and embedded devices already support a large amount of storage (in order of GBs).
In summary, the amount of storage required to practically enable continual learning on
many modern edge platforms such as Nvidia Jetson or Raspberry PIs and smartphones is
not excessive, as evident from Table A.4. Note that tuning appropriate parameters in the
IL method would still allow IL to perform effectively, i.e., ensuring good performance with
a reasonable budget size (discussed in §A.5.5).

Latency: The average training and incremental learning time to execute different IL
methods are illustrated in Table A.5 for all the employed datasets in Scenario 3 on Jetson
Nano2 which is an edge platform having four cores, 4 GB RAM and a GPU and often used
in mobile robotics and can be used in tablets. Training time represents the usual training
time involved in learning a neural network including updating weights, back-propagation,
etc. EWC and Online EWC take the highest time. In small datasets of Ninapro (Per
Subject) and EmotionSense datasets, incremental learning time is around 39.5–58.9 seconds.
In the largest dataset of HHAR, IL takes over 1,160 seconds. This is surprising as EWC is
a simple method. However, the time complexity comes from calculating and updating the
Fisher matrices, which is a computationally expensive process, after every task. SI (mostly
relying on running estimates) and LwF (replay only, calculating distillation loss) are two
of the top three fastest IL methods but come at the peril of very low accuracy which is
not suitable for IL in mobile and embedded applications. iCaRL, the best performing
IL method, is also very fast and takes only a few seconds (e.g., 0.94–2.8 seconds) in the
Emotion datasets and Ninapro (Per Subject) to complete. In the HHAR dataset, the
average latency of IL time of iCaRL with the largest budget size (i.e., 20%) is relatively
small of 133 seconds compared to and its training time (i.e., 633 seconds) and the IL
time of EWC (i.e., 1,160 seconds). In reality, the majority of the time is taken by actual
training (except EWC and Online-EWC), which depends on the number of epochs to be
performed and is independent of the IL method. Across scenarios, we observe that the

2By reporting the results of Scenario 3 where the latency of IL methods is greater than or equal to
that of Scenarios 1 and 2, we aim to capture the upper bound of the latency.
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Table A.5: Average Latency (Training Time/IL Time) in seconds for IL methods on
different datasets - Scenario 3 on Jetson Nano.

IL Method HHAR PAMAP2 Skoda Ninapro
(Per
Subject)

Ninapro
(LOUO)

EmotionSense

EWC 613/1160 185/567 98.2/161 222/55.2 103/544 190/45.6
Online-EWC 575/1156 163/552 85.2/159 213/58.9 93.5/529 190/39.5

SI 597/51.6 171/19.5 94.8/6.2 192/2.2 151/17.1 164/2.6
LWF 591/13.9 182/7.2 73.0/2.1 198/0.86 117/6.7 161/0.73

iCaRL (1%) 522/21.7 153/15.8 146/3.8 224/1.1 160/11.9 235/0.94
iCaRL (5%) 577/40.4 168/22.9 132/4.9 228/1.4 145/20.2 188/1.1
iCaRL (10%) 581/60.5 175/34.4 113/6.4 265/1.9 115/25.8 210/1.3
iCaRL (20%) 633/133 181/53.4 120/9.6 234/2.6 162/42.0 212/1.9
iCaRL (40%) - - - - - 214/2.8
GEM (1%) 663/60.9 160/35.2 78.9/7.9 191/2.6 80.8/26.5 152/3.6
GEM (5%) 790/118.2 192/53.1 80.0/9.5 206/2.8 97.1/37.5 148/3.6
GEM (10%) 1054/192 220/80.5 81.2/11.1 211/2.8 98.1/55.1 149/3.9
GEM (20%) 1081/342 322/136 99.1/14.5 206/3.2 136/90.7 149/4.0
GEM (40%) - - - - - 156/4.2

average training time can range from one to 15 minutes in general.

Having realized that iCaRL is the most promising method in terms of accuracy and
latency, we wanted to check if iCaRL can also effectively work on modern smartphone
CPUs. For this, we have implemented iCaRL on OnePlus 7 Pro for three datasets: Skoda,
Ninapro (Per Subject), and EmotionSense as they represent datasets where IL needs to
be applied to personal mobile devices (single-user case) and Scenario 3 (most practical
scenario). The smartphone has eight cores and 12 GB of RAM. To reiterate, we used
DeepLearning4j library to implement iCaRL. The smartphone app size is 134 MB. The
results are shown in Table A.6. Similar to Jetson Nano, iCaRL takes minimal time (0.5–212
seconds) for all the tasks for every dataset. This does not only mean that IL is feasible on
modern smartphones but even if a very high number of tasks are to be learned even in the
most challenging scenario, iCaRL can do end-to-end IL in a few minutes. The training
time slows down the whole process and ranges from 20–75 minutes on the CPU of the
smartphone for different datasets. Also note that the training time taken by the tasks
after the first task (actual incremental tasks after the initial model is trained) is very
small: one to four minutes. This is a relevant result as one can train a baseline model
on a powerful machine first and can then move it to a mobile and embedded device to
learn incrementally over time. Regardless, we show that the complete incremental learning
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Table A.6: Average Latency (Training Time/IL Time) in seconds for iCaRL on three
datasets - Scenario 3 on Smartphone.

IL Method Skoda Ninapro (Per
Subject)

EmotionSense

iCaRL (1%) 4400/9 1956/1.28 1568/0.5
iCaRL (5%) 3894/29 1974/3 1388/1.91
iCaRL (10%) 3869/72 2312/4.5 1535/2.6
iCaRL (20%) 3902/212 2008/5.1 1517/4.7
iCaRL (40%) - - 1506/8.1

process can still be done entirely on the smartphone CPU, especially given that the phone
can be charged overnight. This is an interesting result as this suggests that our continual
learning framework can be deployed on a smartphone CPU. It is also encouraging because
the performance can be further improved by exploiting GPU and NPU once support for
training them programmatically starts to emerge.

Memory footprint: We further examine the peak memory usage of iCaRL with its
largest budget size of 20-40% on all the datasets to evaluate whether or not it can fit
the tight memory budget of Jetson Nano. The peak memory overheads of running the
end-to-end IL range from 196 MB for our smallest dataset of EmotionSense to 1,194 MB
for our largest dataset of HHAR, when the CPU is used for IL. Then, when we use GPU
for running iCaRL, it incurs 1,782-2,127 MB peak memory and requires an additional
swap space of 750-3,523 MB. We observed that the reduction of latency using GPU over
CPU is largely consistent between 80-86%, indicating that the swap space has minimal
impacts on the speed-up of the IL using GPU compared to using CPU on Jetson Nano.
This result confirms that IL in the mobile and embedded sensing domain is applicable on
resource-constrained devices within a reasonable memory overhead.

A.5.5 Performance with IL parameters

We study the importance of the storage budget parameter for iCaRL as it is the best
performing IL method. Figure A.5 shows the weighted F1-score with changing storage
budgets of 1%, 5%, 10%, and 20% of total training samples (up to 40% storage budget for
the case of ER). In general, more samples are needed to avoid CF as the complexity of the
scenario increases. In Scenario 1, only 1% of total samples are needed to achieve similar
performance as the joint model. Moreover, in Scenario 2 and 3, the results show that the
budget size of 5% is enough to achieve the high performance which is quite close to that
of the joint model, although the difficulty of the task increases compared to Scenario 1.
In contrast, 10% of samples are required to achieve near joint model’s performance (i.e.,

43



HHAR PAMAP2 Skoda
Dataset

0.5

0.6

0.7

0.8

0.9

1.0
W

ei
gh

te
d 

F1

0.
80

0.
85 0.
87

0.
80

0.
86

0.
93

0.
80

0.
87

0.
95

0.
81

0.
87

0.
95

0.
82

0.
87

0.
98

=1%
=5%
=10%

=20%
Joint

(a) Scenario 1

Ninapro (Per Subject) NinaPro (LOUO) EmotionSense
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1 0.

59

0.
29

0.
41

0.
64

0.
30

0.
51

0.
66

0.
30

0.
53

0.
68

0.
29

0.
54 0.
55

0.
74

0.
30

0.
61

=1%
=5%
=10%

=20%
=40%
Joint

(b) Scenario 1 (GR & ER)

HHAR PAMAP2 Skoda
Dataset

0.5

0.6

0.7

0.8

0.9

1.0

W
ei

gh
te

d 
F1

0.
74

0.
83

0.
79

0.
79

0.
86 0.
89

0.
80

0.
87

0.
92

0.
81

0.
87

0.
94

0.
82

0.
87

0.
98

=1%
=5%
=10%

=20%
Joint

(c) Scenario 2

Ninapro (Per Subject) NinaPro (LOUO) EmotionSense
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

0.
48

0.
27

0.
35

0.
58

0.
29

0.
44

0.
61

0.
30

0.
48

0.
65

0.
30

0.
51 0.

54

0.
74

0.
30

0.
61

=1%
=5%
=10%

=20%
=40%
Joint

(d) Scenario 2 (GR & ER)

HHAR PAMAP2 Skoda
Dataset

0.5

0.6

0.7

0.8

0.9

1.0

W
ei

gh
te

d 
F1

0.
74

0.
81

0.
70

0.
79

0.
87

0.
86

0.
79

0.
87 0.
89

0.
79

0.
88 0.
91

0.
82

0.
87

0.
98

=1%
=5%
=10%

=20%
Joint

(e) Scenario 3

Ninapro (Per Subject) NinaPro (LOUO) EmotionSense
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

0.
30

0.
27

0.
23

0.
50

0.
30

0.
37

0.
57

0.
28

0.
42

0.
62

0.
28

0.
45 0.

48

0.
74

0.
30

0.
61

=1%
=5%
=10%

=20%
=40%
Joint

(f) Scenario 3 (GR & ER)

Figure A.5: The parameter analysis of the best performing model, iCaRL, in all tasks
(HAR, GR, and ER) for all scenarios according to its storage budgets. Reported results
are averaged over 10 trials. Standard-error intervals are depicted.
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upper bound performance) in the most challenging setup (Scenario 3).

Note that the performances of iCaRL with the budget size of 5% are often very close
to those of iCaRL with budget sizes of 10%, 20%, and 40%. This result indicates that
iCaRL enables us to achieve close to the performance of the joint model without requiring
excessive storage (less than 30 MB in all datasets in our experiment when a budget size
is 5%). Specifically, the required storage of iCaRL with 5% budget size for each dataset
(HHAR, PAMAP2, Skoda, Ninapro (Per Subject), Ninapro (LOUO), and EmotionSense
corresponds to 28.84, 12.34, 4.19, 0.51, 3.19, and 0.41 MB, respectively. This is an
interesting finding, making iCaRL a good candidate to perform IL on many embedded
devices and smartphones with reasonable storage as only a few samples are required to be
stored.

A.6 Discussion

We discuss the potential guidelines (G) for researchers and practitioners in the mobile and
embedded systems community based on our findings of this work. The readers should take
our results and guidelines with a pinch of salt as we did not compare all the existing IL
methods due to reasons mentioned earlier (Section A.3) and These findings are based on a
few prominent IL methods we analyzed in our study.

(G1): If storage is not an issue on the device, one can choose to use the iCaRL method
since it performs best across all datasets in different sensing applications. As many
modern computing platforms including smartphones and embedded devices have
large storage capacity, the issue of storing a proportion of training samples can be
minor. iCaRL is also not very computationally expensive on the modern embedded
devices and the smartphone. Also, the process can be sped up by using GPUs
although it incurs higher peak memory than CPUs.

(G2): GEM, although being a replay with exemplars-based method like iCaRL, should not
be preferred over iCaRL as its performance remains inferior to those of iCaRL. Also,
GEM requires more storage than iCaRL.

(G3): In a severely resource-constrained environment, EWC and Online EWC can be a
reasonable alternative to iCaRL since these methods require less additional storage.
Although EWC is a computationally expensive method, however the computational
cost can be manageable as the IL process is only performed once per task, and one
can reduce the number of samples used to compute fisher matrices, which account
for the majority of the IL time.

(G4): LwF and SI should be avoided as they offer minimal protection against CF on mobile
sensing applications.
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(G5): If the resources such as storage available are constrained on the device, we suggest
using iCaRL with the budget size of 1%–5% of training samples as using higher
budget size does not always provide enough benefits in case the training dataset
size is large (HHAR, PAMAP2, and NinaPro (LOUO)). For datasets having smaller
training sizes such as Ninapro (Per Subject) and EmotionSense datasets, having a
higher budget of 20%–40% helps to a large extent.

A.7 Conclusions and Future Work

In this paper, we studied the CF problem using six prominent IL methods based on three
representative sensing applications (i.e., HAR, GR, and ER) in three continual learning
scenarios with varying complexities. With our end-to-end IL framework implemented
on Nvidia Jetson Nano and a smartphone (OnePlus 7 Pro), we conducted extensive
experiments to investigate IL methods’ performance, generalizability, and trade-offs of
storage, computational costs, and memory footprints. We first identified that CF occurs
in mobile and embedded sensing applications when IL methods are not used. We also
found that while most IL methods solve the CF in simple scenarios, only iCaRL among
the compared methods can successfully alleviate CF issues in more challenging scenarios
across the employed datasets. Furthermore, we demonstrated that the IL approaches incur
minor to modest storage, peak memory usage, and latency overheads (a minute per task
in general), thereby saving a considerable amount of computational resources on-device
compared to a case when training is done from scratch whenever a new class/task is
added to the system. Finally, based on those findings, we discuss potential guidelines for
practitioners and researchers interested in applying IL to edge platforms.

As future work, we believe that it would be worthwhile to further investigate continual
learning on more severely resource-constrained devices such as microcontrollers as they
have smaller storage, limited memory, and low computational power to apply IL methods.
Moreover, we want to study how model compression techniques such as quantization affect
IL methods’ performance. Similarly, combining binary neural networks with IL methods
can be interesting future work. The other key point our study highlighted is that the major
bottleneck comes from the training during the IL process. In this context, techniques
such as Mixed Precision Training (MPT) [147] and quantization using only 16 or 8-bit
floating-point representation [148] for weights might be useful.
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Appendix B

FastICARL: Fast Incremental
Classifier and Representation
Learning with Efficient Budget
Allocation in Audio Sensing
Applications
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Abstract

Various incremental learning (IL) approaches have been proposed to help deep learning
models learn new tasks/classes continuously without forgetting what was learned previ-
ously (i.e., avoid catastrophic forgetting). With the growing number of deployed audio
sensing applications that need to dynamically incorporate new tasks and changing input
distribution from users, the ability of IL on-device becomes essential for both efficiency
and user privacy.

However, prior works suffer from high computational costs and storage demands which
hinders the deployment of IL on-device. In this work, to overcome these limitations,
we develop an end-to-end and on-device IL framework, FastICARL, that incorporates
an exemplar-based IL and quantization in the context of audio-based applications. We
first employ k-nearest-neighbor to reduce the latency of IL. Then, we jointly utilize
a quantization technique to decrease the storage requirements of IL. We implement
FastICARL on two types of mobile devices and demonstrate that FastICARL remarkably
decreases the IL time up to 78-92% and the storage requirements by 2-4 times without
sacrificing its performance. FastICARL enables complete on-device IL, ensuring user
privacy as the user data does not need to leave the device.



B.1 Introduction

A recent development of deep learning has revolutionized various audio-based applications
such as emotion recognition (ER) [20], environmental sound classification (ESC) [149],
and keyword spotting [150, 151]. However, in a real-world setting where a deployed audio
classification models may need to dynamically incorporate new tasks (i.e., new classes or
inputs) from users [35] and changing input distribution [39], current supervised learning
approaches are severely limited due to the constrained nature of available resources on
the edge devices and the catastrophic forgetting (CF) issue [13]. That is, a deep learning
model becomes able to recognize a new task but forgets previously learned knowledge.

Many researchers proposed a range of Incremental Learning (IL) methods [15] to solve the
CF problem. The first group of the IL approaches is a regularization-based method [16,
47, 48] where regularization terms are added to the loss function to minimize changes
to important weights of a model for previous tasks to prevent forgetting. Kirkpatrick et
al. [16] proposed a regularization-based method, Elastic Weight Consolidation (EWC),
which uses the Fisher information matrix to identify important weights to the previous
tasks and update less on those weights while learning a new task. Another group of the
IL approaches is exemplars-based method [17, 55] where the method requires to store
important samples from previous tasks to prevent from forgetting learned tasks. Rebuffi
et al. [17] proposed a representative exemplar-based method, ICARL, that first utilizes
herding [133] to search for exemplars (informative samples) and then uses knowledge
distillation loss on the previously learned classes and classification losses on a new class
to prevent forgetting and learn the new class. However, prior works are limited in two
ways. First, It is challenging to enable IL on-device since IL methods are computationally
heavy. Second, exemplar-based methods require storing exemplars, which can impose a
considerable burden on resource-constrained systems.

Moreover, many techniques have been proposed to facilitate efficient machine learning
systems on resource-constrained devices. Quantization and low-bit precision of model
parameters are utilized to reduce the size of the model [103, 107]. Low-rank factoriza-
tion [152, 153] and pruning [29] have been proven effective in reducing model size, while
retaining accuracy. IL with optimizations that allow its use on-device, however, has never
been explored in the context of audio-based applications.

In this work, an end-to-end framework, FastICARL, is developed to enable efficient and
accurate on-device IL in two audio sensing applications, an ER task and an ESC task. Also,
FastICARL is a new IL method devised to improve upon the representative exemplar-based
IL method, ICARL, as we observed that ICARL consistently outperforms EWC and other
regularization-based IL methods [47, 48]. However, it has computational and storage
issues. Thus, FastICARL solves these limitations while maintaining accuracy. First, we
optimize the construction process of an exemplar set (which takes most of the IL time)
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to shorten the IL time to tackle the first limitation. Specifically, to find the informative
exemplars that can best approximate feature vectors over all training examples, ICARL
relies on herding which contains inefficient double for loops. Instead, FastICARL utilizes
a k-nearest-neighbor and a max heap data structure to search exemplars more efficiently.
In addition, to address the second limitation, we further optimize FastICARL by applying
quantization on exemplars to reduce the storage requirement. We convert the 32-bit float
data type into 16-bit float and 8-bit integer data types. Furthermore, we implement our
end-to-end IL framework on mobile and embedded devices of two different specifications:
Jetson Nano and a smartphone (Google Pixel 4). For a smartphone implementation, we
employ MNN [154] and our implementation enables complete on-device training of new
tasks/classes unlike TensorFlow Lite [155] or PyTorch Mobile [156] where only on-device
inference is enabled.

Overall, the major contributions and findings of this paper are as follows. We design,
implement, and evaluate FastICARL, which overcomes the limitations of the prior work.
First of all, FastICARL shows that it can effectively solve the CF issues happening in audio-
based datasets by achieving 69% and 71% weighted F1-scores for ER and ESC, respectively.
FastICARL reduces the latency of exemplar set selection up to 78% on Jetson Nano and
92% on Google Pixel 4. Moreover, FastICARL decreases the storage requirement by 2-4
times without sacrificing its performance. In addition, we demonstrate that FastICARL
can enable on-device IL without the support of the cloud. Hence, FastICARL ensures
complete data privacy as user data does not need to leave the device. Finally, to the
best of our knowledge, FastICARL is the first end-to-end and on-device framework that
incorporates exemplar-based IL and quantization techniques in the context of audio sensing
applications.

B.2 Methodology

In this section, we formulate our problem (§B.2.1) and describe the important prior work
(§B.2.2). After that, we propose our IL method, FastICARL (§B.2.3).

B.2.1 Problem Formulation

We focus on Sequential Learning Tasks (SLTs) [12] from the audio sensing tasks, where new
classes (e.g., different sounds in ESC) can emerge over time. Thus, the learning model has
to continuously learn to accommodate new classes without CF, as would happen in real-life
scenarios. Learning tasks of this type, called SLTs, indicates that a model continuously
learns two or more tasks D1, ..., Dk, one after another instead of learning a single task D
once (i.e., multi-task learning). Note that each task consists of disjoint groups of classes
as we adopt class-incremental learning [132]. Formally, we are given training samples,
X1, X2, ...,, where Xy is a set of samples of class y. Inspired by prior works [11, 35], we

50



first train a model on the first task with N/2 classes and then incrementally train the
model by adding subsequent tasks with one class (N/2 + 1 tasks).

B.2.2 ICARL

ICARL is the representative exemplar-based IL method in the literature that attempts to
solve the CF problem of class-incremental setting. At the high level, ICARL maintains
a set of exemplar samples for each observed class (see Algorithm 2). An exemplar set is
a subset of all samples of the class to carry the most representative information of the
class. When new tasks (classes) become available, ICARL first creates a new training
set by joining all exemplar sets and the data of the new class. Then, it updates its
weight parameters by minimizing a classification loss of the new task (class) as well as
the distillation loss of the previous tasks (classes). Then, ICARL builds an exemplar
set for the new class and trims the existing exemplars for previous classes. Finally, the
classification is performed by finding the nearest-class-mean of exemplars to a given test
sample in a feature space extracted from the learned representation.

B.2.3 FastICARL

Although ICARL provides impressive performance, it is limited by high computational costs
and large storage requirements to maintain sufficient budget size to perform reasonably
well. To begin with, ICARL’s high computational loads comes from its herding operation
(find an exemplar set that has a min distance between the class mean and exemplars mean
in feature space), i.e., exemplar selection procedure which is based on the inefficient double
for loops (Lines 2-4), resulting in the O(nm2) complexity (which takes up 70 - 90% of the
total IL time). n is the number of examples in a class, and m represents the target number
of exemplars. Note that in this work, training time indicates the usual training time with
respect to back-propagation, updating weights, while the rest of the time in learning a
new task or adding a new class is considered IL time. Thus, instead of relying on herding,
FastICARL employs a k-nearest-neighbor search to identify the representative examples
to construct exemplar sets. This enables FastICARL to accelerate the process of exemplar
construction without performance degradation, as shown in Section B.3. By jointly utilizing
the max heap as in Algorithm 2, FastICARL remarkably reduces the complexity of finding
m exemplars out of n samples to O(n(1 + log(m)) +mlog(m)) = O(nlog(m)). In detail,
the computation of feature distance and the insertion of max heap cost 1 + log(m) which
is performed on n samples in total. After that, the sorting on m identified exemplars in a
max heap costs another mlog(m).

Furthermore, ICARL requires as much as 69 MB (see §B.3.4). To alleviate this storage
demand, we apply quantization on exemplar sets on the fly. Note that since budget sizes
take up 72-99% of the storage requirements of FastICARL, we apply quantization only
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Algorithm 2: Construction and quantization of exemplar sets for ICARL/FastICARL

Input: Feature Extractor F(), The number of exemplars to be stored m,
Quantization bit b, IL method

Output: Quantized Exemplar set Q
Data: X = {x1, ..., xn} of class y

1 µ← 1
n

∑n
i=1F(xi) // calculate class mean

/* find m exemplars out of n samples */

2 if IL method is ICARL then
3 for k = 1, ...,m do

4 pk ← argmin
x∈X

∥∥∥µ− 1
k
(F(x) +

∑k−1
i=1 F(pi))

∥∥∥
5 if IL method is FastICARL then

/* calculate feature distance between each sample and class mean */

6 for i = 1, ..., n do
7 di = F(xi)− µ

/* build max heap with size k */

8 create max heap H of pair {d, index}
9 for k = 1, ...,m do

10 H.insert( dk, k )
/* loop over the remaining samples while updating the max heap */

11 for k = m+ 1, ..., n do
12 if dk < H.extractMaxDist() then
13 H.pop() // delete one item from H

14 H.insert( dk, k )
/* build a sorted exemplar set P */

15 for k = m, ..., 1 do
16 i← H.extractMaxDistIndex(), H.pop()
17 pk ← xi
18 for k = 1, ...,m do
19 qk ← Quantize(pk, b)
20 Q← (q1, ..., qm) // Quantized exemplar set

on exemplars in this work. While constructing exemplar sets, FastICARL converts 32-bit
float data to 16-bit float or 8-bit integer types and store them with a smaller budget.
When converting between 32-bit float and 8-bit integer, we use quantization scheme used
in [103] to minimize the information loss in quantization. The scheme utilizes an affine
mapping of integers q to real numbers r, i.e.,

r = S(q − Z) (B.1)

52



for some constant quantization parameters S and Z. S denotes the scale of an arbitrary
positive real number, and Z denotes zero-point of the same type as quantized values q
and corresponds to the real value 0.

B.3 Evaluation

B.3.1 Datasets

We experiment with our method on two audio applications.

EmotionSense: For emotion recognition (ER) application, we employ the EmotionSense
dataset [20] as it is used in multiple studies in audio sensing [144, 8, 58]. It contains audio
signals which are clustered into five standard broader emotion groups, generally used by
social psychologists [157] such as (1) Happy, (2) Sad, (3) Fear, (4) Anger, and (5) Neutral.
This dataset has 2,235 samples, and each measurement corresponds to a particular emotion
based on a 5-second context window. Following [78], we extract 24 log filter banks [145]
from each audio frame over a time window of 30 ms with 10 ms stride. After that, as our
preprocessing steps, we downsample each sample measurement by averaging corresponding
24 filter banks of every 250 ms (or 25 consecutive windows) without any overlap to reduce
the length of the input sequence for a learned neural network. We normalize each window
to zero mean and unit variance. As a result, we created an input of size 20× 24.

UrbanSound8K: For environment sound classification (ESC) application, we adopt the
UrbanSound8K dataset [149] as it is a large dataset that can test the effectiveness of our
method on resource-limited devices. UrbanSound8K contains 9.7 hour-long data with 8,732
labeled urban sounds collected in real-world settings. This dataset consists of 10 audio
event classes such as car horn, drilling, street music, etc. Following [73], we extracted four
different audio features ((1) Log-mel spectrogram, (2) chroma, (3) tonnets, (4) spectral
contrast) for each sound clip, sampled at 22 kHz. Using the first 3-seconds of sound, we
created an input of size 128 × 85, where 128 represents the number of frames and 85
represents aggregated feature size of the four audio features.

B.3.2 Experimental Setup

Task: As described in §B.2.1, we adopt class-incremental learning. Hence, for Emotion-
Sense, two classes are selected as task 1 for training a base model, and then the other
three classes are added to the model one by one sequentially. For UrbanSound8K, five
classes are used as the first task, and the other five classes are learned incrementally. Note
that all reported results in §B.3.4 are averaged over five times of experiments.

Model Architecture: We adopt a convolutional neural networks (CNN) architecture
from prior work [73] to construct the ER and ESC models. To identify a high-performing
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Table B.1: Average weighted F1-score of baselines and FastICARL according to the budget
size (B = 5%, 10%, 20%) in EmotionSense and UrbanSound8K datasets.

EmotionSense (ER) UrbanSound8K (ESC)

5% 10% 20% 5% 10% 20%

ICARL (32 bits) 0.57 0.60 0.70 0.67 0.69 0.69
ICARL (16 bits) 0.55 0.63 0.70 0.66 0.67 0.71
ICARL (8 bits) 0.59 0.62 0.68 0.65 0.68 0.70

FastICARL (32 bits) 0.57 0.62 0.67 0.67 0.69 0.70
FastICARL (16 bits) 0.58 0.65 0.68 0.66 0.69 0.71
FastICARL (8 bits) 0.60 0.63 0.69 0.65 0.68 0.69

Joint (Upper Bound) 0.83 0.89
None (Lower Bound) 0.41 0.02

and yet lightweight CNN model to operate on embedded and mobile devices, we conducted
hyper-parameter search with different number of convolutional layers {2,3,4}, number
of convolutional filters {8,16,32}, pooling layer type {max pooling, average pooling},
number of fully-connected (FC) layers {0,1} and its hidden units {128,512,1024}. A basic
convolutional layer consists of 3× 3 convolution, batch normalization, and Rectified Linear
Unit (ReLU). We found that although the best performing model is a 4-layered CNN
with 32 Conv filters followed by an FC layer (Weighted F1-score of 86% for ER and 90%
for ESC), the performance degradation without the FC layer is minimal (see Table B.1)
while the majority of the model parameters are consumed in the FC layer as shown in [73].
Hence, as our final CNN architecture, we use [Conv: {32,32,64,64}] for ER and [Conv:
{16,16,32,32}] for ESC. We omit an FC layer in both applications, and average pooling
layers and a 0.5 dropout probability are adopted for the second and fourth Conv layers.
ADAM optimizer [158] and learning rate of 0.001 are used.

Evaluation Protocol: Following prior works [20, 73], the 10% of each class is used as
the test set and the remaining as the training data. In addition, we report the performance
of a model trained up to task k incrementally. Also, we report the results based on a
weighted F1-score which is more resilient to class imbalances as the employed datasets are
not balanced.

Baselines: To evaluate the effectiveness of FastICARL, we include various baselines in
our experiments. First, we include a Joint model which represents a scenario when the
model is trained with training data of all classes available from the beginning. Joint
serves as a performance upper bound. Second, a None model represents a case where a
model is fine-tuned incrementally by adding classes to the model without any IL method.
None can be regarded as a performance lower bound. Thirdly, we include ICARL with
three quantization levels (32, 16, and 8 bits). Finally, FastICARL (32, 16, and 8 bits) is
compared.
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Table B.2: Average Latency (IL Time) in seconds for ICARL and FastICARL on Jetson
Nano and a smartphone (Google Pixel 4) for both datasets according to the budget size
(B = 5%, 10%, 20%).

Embedded Device (Jetson Nano) Smartphone (Google Pixel 4)

EmotionSense (ER) UrbanSound8K (ESC) EmotionSense (ER) UrbanSound8K (ESC)

5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

ICARL (32 bits) 6.25 7.24 9.35 102 144 271 1.41 1.98 2.73 41.5 75.5 138
ICARL (16 bits) 6.30 7.40 9.25 100 144 270 1.48 1.99 2.74 44.6 78.8 139
ICARL (8 bits) 6.27 7.40 9.25 120 178 292 1.43 1.99 3.04 45.4 77.7 146

FastICARL (32 bits) 5.10 5.18 5.18 60.6 60.8 60.7 0.88 0.90 0.83 10.5 10.8 10.4
FastICARL (16 bits) 4.96 4.98 5.22 61.1 61.5 60.6 0.87 0.89 0.84 10.7 11.2 10.9
FastICARL (8 bits) 5.01 5.07 5.24 67.1 66.3 61.5 0.90 0.91 0.87 10.7 10.7 10.6

B.3.3 Implementation

To evaluate our framework on resource-constrained devices, we implemented it on an
embedded (Jetson Nano) and a mobile device (Google Pixel 4). The Jetson Nano is an
embedded mobile platform with four cores and 4 GB RAM. It is often utilized in mobile
robotics. We use PyTorch 1.6 to develop and evaluate FastICARL on Jetson Nano. The
Google Pixel 4 phone has eight cores and 6 GB RAM. We develop FastICARL based on
C++ on the Android smartphone using mobile deep learning framework, MNN, and the
Android Native Development Kit. Note that our implementation of FastICARL on the
smartphone enables complete on-device training of new tasks/classes incrementally, unlike
other deep learning frameworks on mobile platforms (e.g., PyTorch Mobile) where only on-
device inference is supported. The binary size of our implementation on a mobile platform
is only 3.8 MB which drastically reduces the burden of integrating the IL functionality
into mobile applications given that ICARL requires as much as 69 MB for UrbanSound8K.

B.3.4 Results

Performance: We first show the average weighted F1-score across all runs for different
baselines and IL methods for the EmotionSense and UrbanSound8K datasets in Table B.1.
For both datasets, we present the performance according to the size of the budgets storing
exemplars (5%, 10%, and 20%) to analyze trade-offs between the performance and storage
requirement of the studied IL methods. Note that the weighted F1-score of the models
after all tasks are trained incrementally is reported.

To begin with, the None model allows us to confirm that CF occurs without the IL method.
Its weighted F1-score drops sharply to 41% for ER and 2% for ESC. In contrast, the Joint
model achieves as high as 83% and 89% weighted F1-scores for ER and ESC, respectively.
ICARL (32 bits) and our proposed IL method, FastICARL (32 bits), can largely mitigate
the CF issues observed in the None model. With a budget size of 20%, ICARL provides a
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high weighted F1-score of 70% for ER and 69% for ESC. Likewise, FastICARL achieves a
similar performance (67% for ER and 70% for ESC) to that of ICARL, which stays close
to the upper bound performance of the Joint model. Furthermore, we find that the impact
of the information loss due to the quantization of the saved exemplars for both ICARL
and FastICARL is minimal. As shown in Table B.1, all four variants, such as ICARL (16
and 8 bits) and FastICARL (16 and 8 bits), achieve similar performance to their original
counterparts.

Finally, we study the importance of the storage budget parameter. We present the
performance of our IL method according to its budgets of 5%, 10%, and 20% of total
training samples. In general, the more samples are used as exemplars, the higher the
weighted F1-score the IL method can achieve. We also find that our method (FastICARL)
needs only 5% budget size to achieves a weighted F1-score of 60-64% and successfully
retain its weighted F1-score even after losing some information by applying quantization
up to 8 bits on its exemplars.

Latency: We measure the computational costs of sequentially learning additional classes
based on a pre-trained model. The average IL time to run different IL methods is presented
in Table B.2. The IL time of FastICARL (32, 16, and 8 bits) ranges 4.96-67.1 seconds
on Jetson Nano and 0.83-11.2 seconds on Google Pixel 4 depending on the budget and
datasets. FastICARL remarkably reduces the IL time by 18-78% on Jetson Nano and
37-92% on Google Pixel 4 compared to ICARL. Note that the training time of ICARL
and FastICARL is approximately the same (these results are omitted for brevity). Also,
FastICARL (16 and 8 bits) shows substantial improvement in IL time: this indicates that
the additional operation of quantizing exemplars does not impose a meaningful burden on
the system.

Storage: We now show the storage overhead of the IL method. The size of FastICARL is
composed of the model parameter size (M) and budget size (B). As FastICARL relies on
stored exemplars, its storage demand is primarily driven by the number of exemplars to
be stored, i.e., budget size (B). As shown in Figure B.1, FastICARL requires at most 0.49
MB for the EmotionSense dataset and 18 MB for the UrbanSound8K dataset, decreasing
the storage requirement 2 to 4 folds over ICARL. Model sizes for EmotionSense and
UrbanSound8K datasets are fixed as 0.3 MB and 1 MB, respectively.

Based on the results in this section, we have demonstrated that FastICARL enables faster
IL by reducing the IL time and storage requirements by applying quantization.

B.4 Conclusions

In this paper, we developed an end-to-end and on-device IL framework, FastICARL,
that enables efficient and accurate IL in mobile sensing applications. We implemented
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Figure B.1: Comparison of the storage requirement (M+ B) for ICARL and FastICARL
(32, 16, and 8 bits) based on 20% budget size in each dataset.

FastICARL on two resource-constrained devices (Jetson Nano and Google Pixel 4) and
demonstrated its effectiveness and efficiency. FastICARL decreases the IL time up to
78-92% by optimizing the exemplar construction procedure and also reduces the storage
requirements by 2-4 times by quantizing its exemplars without sacrificing the performance.

There are many interesting directions that deserve further research. First of all, we want
to extend our work to enable a higher degree of quantization (such as using 2 or 3 bits)
and apply pruning on a model to reduce the model parameters and speed up the training
process, which is another bottleneck of the IL. Furthermore, it is worth investigating
IL methods on more severely resource-constrained devices such as micro-controller units
having meager system resources.
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