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ABSTRACT

Continual learning approaches help deep neural network mod-

els adapt and learn incrementally by trying to solve catastrophic

forgetting. However, whether these existing approaches, applied

traditionally to image-based tasks, work with the same efficacy to

the sequential time series data generated by mobile or embedded

sensing systems remains an unanswered question.

To address this void, we conduct the first comprehensive empir-

ical study that quantifies the performance of three predominant

continual learning schemes (i.e., regularization, replay, and replay

with examples) on six datasets from three mobile and embedded

sensing applications in a range of scenarios having different learn-

ing complexities. More specifically, we implement an end-to-end

continual learning framework on edge devices. Then we investi-

gate the generalizability, trade-offs between performance, storage,

computational costs, and memory footprint of different continual

learning methods.

Our findings suggest that replay with exemplars-based schemes

such as iCaRL has the best performance trade-offs, even in complex

scenarios, at the expense of some storage space (few MBs) for

training examples (1% to 5%). We also demonstrate for the first

time that it is feasible and practical to run continual learning on-

device with a limited memory budget. In particular, the latency

on two types of mobile and embedded devices suggests that both

incremental learning time (few seconds - 4 minutes) and training

time (1 - 75 minutes) across datasets are acceptable, as training

could happen on the device when the embedded device is charging

thereby ensuring complete data privacy. Finally, we present some

guidelines for practitioners who want to apply a continual learning

paradigm for mobile sensing tasks.

CCS CONCEPTS

• Human-centered costmputing→ Ubiquitous and mobile com-

puting; • Computing methodologies→ Lifelong machine learn-

ing; • General and reference→ Empirical studies.
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1 INTRODUCTION

Deep learning has revolutionized the performance of various disci-

plines, including mobile and embedded systems applications. This

is particularly true for applications relying on continuous streams

of sensor data such as activity recognition [13], mental health,

and wellbeing [30], gesture recognition [10], tracking and localiza-

tion [19]. However, a crucial characteristic common to the above

applications is the need for a trainedmodel to adapt to accommodate

new classes and to a dynamically changing environment. In these

settings, the ability to continually learn [20, 35], that is, to learn

consecutive tasks without forgetting how to perform previously

learned tasks, becomes essential. Let us consider an example. Alice

has a deep learning model deployed on her smartphone for human

activity recognition (HAR) to recognize simple activities such as

sitting and standing. As time passes, the model might want to learn

new activities such as walking to be more beneficial to a very active

Alice. A static model will learn new activities but will fail to predict

older activities correctly due to catastrophic forgetting (CF) [32]. CF

means the abrupt and near-complete loss of knowledge obtained

from previous tasks when the model learns new tasks. Specifically,

weights in a model important to previous task A (i.e., previous task)

are changed to optimize towards task B (i.e., new task), which often

leads to the degradation of task A’s performance. With addressing

CF issues, continual learning [35] allows deep learning models to

learn incrementally (adapt or accommodate new classes/behaviors)

and obviates the need to be trained every time from scratch, which

might waste valuable resources on Alice’s device.

In practice, enabling deep learning models to continually learn-

ing is very challenging due to the CF problem. Since CF was first

identified in Multi-Layer Perceptrons (MLPs), many researchers

have proposed methods to mitigate it [22, 28, 29, 40, 54] and eval-

uate it using small and large datasets [20, 36, 42]. However, the
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proposed methods are mainly evaluated in the field of computer

vision with MLPs or Convolutional Neural Networks (CNN) based

deep learning models. It is unclear whether these methods are viable

in sensor-based applications, where the modality of the data is sig-

nificantly different from images, and sequence information needs to

be captured [38]. Moreover, most of the existing Incremental Learn-

ing (IL)1 techniques [26] do not take into account the resource re-

quirements of these devices, which may make them inapplicable

to embedded and mobile systems deployments. There is a clear

need to understand the resource consumption limitations of ex-

isting continual learning methods to see if they are applicable to

resource-constrained edge platforms.

To address the aforementioned limitations of prior work, we

conduct the first systematic study to investigate the CF problem on

mobile and embedded sensing applications using various IL meth-

ods. First, we employ three datasets from the widely researched

application of Human Activity Recognition (HAR) [5] based on

accelerometer, gyroscope, and magnetometer data. Next, we in-

clude two datasets from Gesture Recognition (GR) [56] based on

surface electromyography (sEMG). We further incorporate an Emo-

tion Recognition (ER) dataset [39] based on speech among audio

sensing tasks to make our results generalizable to different modali-

ties across diverse applications. Second, we examine trade-offs of

studied IL methods in terms of their performance, storage footprint,

computational costs, and the peak memory limit to consider the

feasibility and applicability of the IL methods on mobile and em-

bedded devices. To investigate the system limitations imposed by

different configurations of IL, we implemented the IL framework on

two types of devices with different specifications – an Nvidia Jetson

Nano GPU (used in mobile robotics and tablets) and a smartphone

(One Plus 7 Pro) CPU – with respect to computational costs, storage,

and memory footprint.

Overall, the major contributions and findings of this paper are:

First, we conduct a systematic investigation of the CF problem

on mobile and embedded applications using six state-of-the-art IL

methods falling under three paradigms: regularization ((1) Elastic

Weight Consolidation: EWC [22], (2) Synaptic Intelligence: SI [55],

and (3) Online EWC [43]), replay ((4) Learning without Forgetting:

LwF [28]), and replay with exemplars ((5) Incremental Classifier

and Representation Learning: iCaRL [40] and (6) Gradient Episodic

Memory: GEM [29]). In addition, to make our study generalizable

across different modalities of data, we perform analysis on six

datasets of three different sensing applications (HAR, GR, and ER).

Second, to evaluate CF in real-life scenarios, we employ Sequen-

tial Learning Tasks (SLTs), successively learning two or more sub-

tasks 𝐷1, ..., 𝐷𝑘 , instead of learning a single task 𝐷 [36]. Learning
new tasks continuously becomes vital since the number of classes

(activities or users) and the environments of edge applications of-

ten change over time. We adopt a class-incremental learning setup

where each task contains distinct classes, which fits well with prac-

tical application scenarios (see §3.1 for detail). Specifically, we try

three scenarios: adding only one class to a base classifier (simple),

adding half of the classes, 𝑁 /2, to a base classifier at once (mildly
complex), and a very practical (complex) scenario where half of the

1In this work, we use continual learning (CL) and incremental learning (IL)
interchangeably.

classes, 𝑁 /2, are added incrementally to a base classifier one by one,
where 𝑁 is the total number of classes. Through extensive experi-
ments, we find that all IL methods perform well when presented

with simple scenarios but fail in the complex scenario, except for

iCaRL. The main reason for iCaRL’s strong performance is its use

of exemplar samples. To the best of our knowledge, we are the first

to train and implement IL methods to run on mobile and embedded

systems, with the aim to build an end-to-end on-device continual

learning system and to evaluate trade-offs of studied IL methods in

terms of their performance, storage, and computational costs, as

well as the peak memory usage.

Third, we find that iCaRL and GEM require a modest amount of

storage, which seemingly is not an issue on many modern devices

as they support a large amount of storage (in order of a few GBs).

Even at a maximum number of stored exemplars (i.e., 20% - 40%

of training samples), iCaRL and GEM require only 2 MB–115 MB.

However, GEM and EWC-based algorithms are computationally

expensive in that the average IL time varies from 46.3–2,660 seconds

on Jetson Nano. For all other algorithms, it ranged from 8.46–150

seconds on both Jetson Nano and a smartphone. iCaRL, in particular,

needs less than a minute on a smartphone to do IL on a per-task

basis and operates within a reasonable peak memory overhead

(196–2,127 MB). In sum, our study shows that simple deep learning

architectures such as one and two-layer long short-term memory

(LSTM) [17] can be trained entirely on the smartphone, thereby

ensuring complete user privacy.

Finally, based on our findings, we present a series of lessons

and guidelines to help practitioners and researchers in their use of

continual deep learning for mobile sensing applications.

In addition to the above contributions, we adapt the experimental

protocol proposed in [36] which considers learning only two tasks.

We extend this protocol so that it can incorporate any number of

tasks (𝐷1, ..., 𝐷𝑘 ) in an incremental manner and identify the best

performing IL model by permutating a set of hyper-parameters

and IL-method-specific parameters (see §3.3 for detail). Finally, we

believe that our work and findings open the door to the use of

continual learning in edge devices and applications.

2 RELATEDWORK

We begin by reviewing continual learning approaches and empirical

studies to evaluate them, followed by applications of deep learning

in the mobile and edge sensing domain.

2.1 Continual Learning

Continual learning studies the ability to learn over time from a

coming stream of data by incorporating new knowledge while

retaining previously learned experiences [35]. Continual learning

is also called incremental learning (IL) [40], lifelong learning [35],

and sequential learning [32]. In a continual learning setup, learning

methods typically suffer from CF [31, 32], that is, a learned model

experiences performance degradation on previously learned task(s)

(e.g., task A) as information relevant to a new task (e.g., task B) is

incorporated. It is because the learned parameters of the network

that are optimized to perform well in task A (i.e., important weights

to task A) are changed to maximize/minimize the objective/loss of

task B. In recent years, many researchers have focused on solving
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the CF issue by proposing a range of IL approaches. The first group

of approaches is a regularization-basedmethod [22, 43, 45, 55] where

regularization terms are added to the loss function to minimize

changes to important weights of a model for previous tasks to

prevent forgetting. Another group of approaches is a replay-based

method [28] where model parameters are updated for learning a

representation by using training data of the currently available

classes, which is different from replay with exemplars-based method

[23, 29, 40] where updating the model requires training data from

the new class and also few training samples from earlier classes.

The proposed IL methods to solve CF are empirically evaluated

using small and large datasets [20, 36]. However, these empirical

studies either adopt only a few methods [20, 36] or neglect resource

constraints of mobile and embedded devices with respect to stor-

age and latency [18, 36]. To fill this gap, we perform a systematic

study on six most cited (or state-of-the-art) IL methods from three

representative categories of IL approaches with three continual

learning scenarios with different difficulties. Also, we conduct the

first comprehensive study of generalizability and trade-offs between

performance, storage, and computational costs among the studied

IL methods on mobile and embedded devices.

2.2 Deep Learning for Mobile Sensing Systems

Deep learning is increasingly being applied in mobile and embed-

ded systems as it achieves state-of-the-art performances on many

sensing applications such as activity recognition [14, 33], gesture

recognition [37], and audio sensing [25]. [14] experimented with

three variants of deep learning approaches such as feed-forward,

convolutional, and recurrent neural networks on HAR datasets, and

present guidelines for training neural networks. [34] proposed the

DeepConvLSTM model in which convolutional layers extract the

features from raw IMU data, and Long-Short Term Memory (LSTM)

recurrent layers capture temporal dynamics of feature activations

to improve the performance of HAR.

Deep neural networks have also helped applications that need to

recognize hand gestures using surface electromyographic (sEMG)

signals generated during muscle contractions [3, 24, 46]. [56] pro-

posed a self-re-calibrating framework which can be updated to

maintain the model’s performance so that it does not need users’

additional labels for re-training. [3] used sEMG of the forearm

to classify finger touches with their proposed neural architecture

combining convolutional, feed-forward, and LSTM layers.

Many works have investigated using deep learning for audio

sensing tasks including Emotion Recognition, Speaker Identifica-

tion [4], and Keyword Spotting. [11] proposed a deep learning

modeling and optimization framework that specifically targets vari-

ous audio sensing tasks in resource-constrained embedded systems.

Keyword recognition [8] achieved 45% relative improvement with

a deep learning model compared to a competitive Hidden Markov

Model-based system.

In contrast to these works, we investigate whether current IL

methods can enable a practical continual learning system for mo-

bile and embedded sensing applications on-device and what the

performance implications of such systems are. In addition, to fully

understand the issue of CF in mobile sensing where the modality

of the data is significantly different from image datasets [38] with

which the IL methods are typically evaluated, we implement an

end-to-end continual learning framework that evaluates various

IL methods in three embedded sensing applications (e.g., HAR, GR,

and ER) with different data modalities (e.g., accelerometer, sEMG,

and speech).

3 CONTINUAL LEARNING FOR MOBILE AND
EMBEDDED SENSING FRAMEWORK

We now present our framework to comprehensively evaluate the

performance of various IL methods for three mobile and embedded

applications (HAR, GR, and ER). We first explain the continual

learning setup and three scenarios adopted in our experiments

(§3.1). Then, we present six IL methods evaluated in this work

(§3.2). We then describe the hyper-parameters of the LSTM based

deep learning model and the different IL methods (§3.3). After that,

we propose our novel IL model training process in §3.4. Next, we

describe the datasets used in this study (§4.1). Finally, we provide

brief details about our implementation (§3.5)

3.1 Continual Learning Setup and Three
Scenarios

In this work, we focus on Sequential Learning Tasks (SLTs) from

the mobile and embedded systems domain where new classes can

emerge over time. Thus, the learning model has to continuously

learn to accommodate new classes without CF, as would happen in

real-life scenarios. Learning tasks of this type, called SLTs, indicates

that a model continuously learns two or more tasks 𝐷1, ..., 𝐷𝑘 , one

after another instead of learning a single task 𝐷 once [36]. Figure 1
shows an overview of our continual learning system for sensing

applications using HAR as an illustrative example. A user starts

with a model containing a fixed set of classes on their devices which

is then incrementally updated over time as new classes arrives.

We introduce three scenarios of different levels of difficulties for

models to learn continuously (from easy to difficult scenarios). First

of all, inspired by Pfulb et al. [36], we adopt the SLTs consisting

of two tasks: 𝐷1 and 𝐷2. Hence, Scenario 1 consists of two tasks,
where the first task contains the 𝑁 − 1 classes, and the second

task contains the other one class (𝑁 is the total number of classes).
Scenario 2 includes two tasks where the first task contains half of

the classes, 𝑁 /2, and the second task contains the remainder of
the classes. Finally, Scenario 3 deals with a more realistic situation

where many tasks are to be learned sequentially [20]. In the third

scenario, we first train a model in the first task with 𝑁 /2 classes and
then incrementally train the model by adding subsequent tasks with

one class (essentially 𝑁 /2+1 tasks). Unlike the first scenario (which
has only N different cases of task permutations), it is not practical

to consider every random permutation of classes to be included

in different tasks for the second and third scenarios. Hence, we

consider ten variations by randomly choosing classes in each task

for the last two scenarios. Note that each task consists of disjoint

groups of classes as we adopt class-incremental learning [50].

3.2 Incremental Learning Methods

As described in the related work section, various methods exist

that can mitigate CF in IL. We describe them in depth as they

form the basis of our exploration. To mitigate CF, there exist three
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Task 1 Task 2

Base Model
Activity 1 Activity 2 Activity M+1Activity M

...

Base-Model Training

A ti it M+

Incremental Training

Activity 2Activity 1 Activity M

...

Activity M+1

Incremental Model

Figure 1: Overview of our continual learning system.

main categories of IL approaches: (1) Regularization, (2) Replay, and

(3) Replay with Exemplars. We select at least one representative

method for each of the above categories. These methods are the

state of the art methods (most cited) for IL and are most often used

in machine learning papers for comparison. We now describe the

employed methods.

LSTMs [17]: LSTMs are a type of recurrent neural networks

widely used for a sequence classifier in many applications, specifi-

cally for time-series data. We use LSTMs as a base neural network.

EWC [22]: Elastic Weight Consolidation (EWC) is a regulariza-

tion based method which adds a penalty to regular loss function

when learning a new task (i-th task), i.e.,

𝐿(𝜃 ) = 𝐿𝑖 (𝜃 ) + 𝜆/2
𝑖−1∑

𝑗=0

𝐹 𝑗 (Θ𝑖 − Θ∗𝑗 )
2 (1)

where 𝐿(𝜃 ) is the total loss, 𝜃 is the network’s parameters, 𝐿𝑖 (𝜃 ) is
the loss for the new task, and Θ∗𝑗 are the important parameters of

all previous tasks. 𝜆 is a hyperparameter that controls how much
importance should be given to previous tasks compared to the

new task. 𝐹 is the Fisher matrix used to constrain the parameters
important to previously learned tasks to stay close to their old

values to retain the knowledge of previous tasks and to be able to

learn new tasks simultaneously.

Online EWC [43]: It is a variation of EWC method where the

loss function is represented as,

𝐿(𝜃 ) = 𝐿𝑖 (𝜃 ) + 𝜆/2(Θ𝑖 − Θ∗𝑖−1)
2
𝑖−1∑

𝑗=0

𝐹 𝑗 (2)

Online EWC eliminates the need to store mean and fisher matrices

for each previous task and only requires the latest mean and running

sum of fisher matrices to calculate the current task’s total loss.

SI [55]: It is another regularization method which is similar to

EWC where the loss function is calculated in the following way,

𝐿(𝜃 ) = 𝐿𝑖 (𝜃 ) + 𝜆
∑

𝑘

Ω𝑖
𝑘 (𝜃

∗
𝑘 − 𝜃𝑘 )

2 (3)

where k is the subscript for the parameters of the models, 𝜆 is the
strength parameter, 𝜃∗

𝑘
is the parameter value at the end of the

previous task, and Ω𝑖
𝑘
represents the per-parameter regularization

strength taking into account all previous tasks, calculated as:

𝑖−1∑

𝑗=0

𝑤
𝑗
𝑘

(�𝜃
𝑗
𝑘
)2 + 𝜀

(4)

parameter distance �𝜃
𝑗
𝑘
determines how much a parameter moved

between tasks during the entire trajectory of training. 𝜀 is the

dampening parameter to prevent division by zero errors. The main

difference between SI and EWC is that SI weights importance,𝑤𝑘 ,

is continuously updated online during training. In contrast, in EWC,

the Fisher matrices (weights importance) are calculated at the end

of each task.

LwF [28]: This method relies on adding loss for the replayed

data to the loss of the current task. The replayed data is the input

data of the current task which is labeled using the model trained

on the previous tasks to generate target probabilities. The ultimate

aim of the replayed data is to match the probabilities predicted by

the model being trained to the target probabilities (a form of data

distillation) and is termed as the loss for replayed data.

iCaRL [40]: Incremental Classifier and Representation Learning

(iCaRL) store data from previous tasks (i.e., exemplars) to allevi-

ate the CF problem. The exemplars are a representative set of the

small number of samples from a distribution, and those that can

approximate the average feature vector over all training examples

are selected as exemplars (based on herding [52]). The classification

is done based on a nearest-class-mean (NCM) rule using features

extracted from the deep learning model, where the class means

are calculated from the stored examples. When new tasks (classes)

arrive, iCaRL creates a new training set combining the exemplars

from all the previous tasks with the data samples of the new task.

Then, the model parameters are updated by minimizing a loss func-

tion which encourages the model to output the correct class for

the new task (classification loss) and to reproduce the scores stored

in the previous step for the old tasks (distillation loss) using data

samples from the new training set.

GEM [29]: Gradient Episodic Memory (GEM) stores exemplars

from the previous tasks like iCaRL and solves CF as a constrained

optimization problem. A parameter update while doing IL is made

depending on whether it will lead to an increase in loss for the

previous tasks. This is calculated by computing the angle between

loss gradient vectors of stored examples and the proposed parameter

update. If the calculation suggests no loss, then the update is done

straight away. Otherwise, the parameter is updated by projecting

gradient in such a way that it will incur a minimal loss for the

previous tasks.

Our Contribution: It is worth noting that the above six IL meth-

ods are known in the machine learning literature from a theoretical

point of view. Yet, they are not off-the-shelf methods that can be

simply used to any dataset to enable continual learning. As will

be shown in Section 5, there exist many factors affecting the per-

formance and applicability of the IL methods in real-world deploy-

ment such as the complexity of the continual learning scenario,

resource availability of mobile and embedded devices, and choice of
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hyper-parameters. Thus, a distinctive contribution of our work is a

comprehensive evaluation and comparison study of the IL methods

in diverse sensing applications and is to develop an end-to-end and

on-device IL framework that can investigate trade-offs between

performance, storage requirements, and latency.

3.3 Characterization of Hyper-parameters

We categorize hyper-parameters into three types and IL-method-
specific parameters. First of all, we use architectural hyper-parameters

which cannot be changed when learning new tasks, e.g., the num-

ber of hidden layers 𝐿 and its size 𝑆 . We then use learning and
regularization hyper-parameters which can be adaptable when

learning new tasks. For example, a learning rate 𝜖 and 𝜆 term in
L2-regularization can be modified during training over time. We

denote the set of hyper-parameters as P.

IL-method-specific parameters: Each IL method has method-

specific parameters to control the behaviors of the model. For ex-

ample, in regularization-based methods [22, 28, 44, 55], importance

parameter 𝜆 is often utilized to modulate how much importance
a model puts on previous tasks or a current task. The importance

parameter can be adaptable while learning new tasks in our IL

model training process (Algorithm 1). In addition, in replay with

exemplars-based methods [29, 40], the size of the storage budget

is used to balance between storage requirements and the perfor-

mance of a model. Since the budget size is difficult to be adaptable

after completion of the first task, it is given as an input in our

experimental protocol (Algorithm 1).

Hyper-parameter setting for experiments:We first fix sev-

eral hyper-parameters as default values. We set dropout rates for

all tasks as 0.2 and 0.5 in input and hidden layers of a model, respec-

tively [16] and a batch size of 32with Adam optimizer set to a default

learning rate of 0.001 for task 1 (𝐷1). After that, we vary hyper-
parameters for all models in each dataset. Specifically, in the task 1

(𝐷1), we vary architectural hyper-parameters as follows: 𝐿 ⊂ {1, 2},
𝑆 ⊂ {32, 64}. In subsequent tasks from task 2 to k (𝐷2, ..., 𝐷𝑘 ),

we fix architectural hyper-parameters but vary adaptable hyper-

parameters and IL-method-specific parameters as follows: (1) 𝜖 ⊂
{0.001, 0.0001} for all models, (2) 𝜆 ⊂ {1, 10, 102, 103, 104, 105, 106}
for both EWC and Online EWC, (3) 𝛾 ⊂ {0.5, 1.0} for Online EWC,
(4) 𝑐 ⊂ {0.2, 0.4, 0.6, 0.8, 1.0} for SI. We denote varying IL-method-
specific parameters as P𝐼𝐿 . For replay-based methods, the losses

of the current and replayed data are weighted according to the

number of tasks a model has learned so far by following [50]. Note

that budget size, B ⊂ {1%, 5%, 10%, 20%}, is given as an input and
fixed for replay with exemplars-based methods while other hyper-

parameters are permuted. Since the total number of samples for

each dataset is different, we use a ratio from the total training

samples rather than a fixed number of samples for the budget size.

3.4 Model Training Process

We extend protocol [36] to incorporate multiple tasks up to task

k (𝐷1, ..., 𝐷𝑘 ) in an incremental manner based on our character-

ization of hyper-parameters and IL-method-specific parameters.

Algorithm 1 describes our protocol in which we only utilize train-

ing data of a current task j (≤ 𝑘) for model learning and test data
of previously learned tasks up to task j for evaluation.

Algorithm 1: IL model training process to determine the

best model by incrementally learning tasks up to task k

Input: Tasks 𝐷1, ..., 𝐷𝑘 , model𝑚, budget B, epochs E
Input: The number of hidden layers 𝐿, Hidden layer size 𝑆
Input: IL-method-specific parameters P𝐼𝐿 , learning rate 𝜖
Output: The best model with hyper-parameter vector 𝑝∗

1 for 𝑝 ∈ (𝐿 ∪ 𝑆) do
2 for 𝑡 = 1, E do
3 Train model𝑚1 using training set of 𝐷1 with 𝑝

4 Test model𝑚1 using test set of 𝐷1
5 Store performance 𝑞1,𝑡
6 Update the model𝑚1,𝑝∗ with max 𝑞1
7 for 𝑝 ∈ (P𝐼𝐿 ∪ 𝜖) do
8 Initialize model𝑚2 with𝑚1,𝑝∗

9 for 𝑗 = 2, 𝑘 do
10 for 𝑡 = 1, E do
11 Train model𝑚2 using training set of 𝐷 𝑗 with 𝑝

12 Test model𝑚2 using test set of ∪
𝑗
𝑙=1𝐷𝑙

13 Store performance 𝑞 𝑗,𝑡
14 Update the model𝑚𝑘,𝑝∗ with max 𝑞𝑘

Given an SLT consisting of𝐷1, 𝐷2, ..., 𝐷𝑘 and a model𝑚, the goal
is to find a vector of hyper-parameters 𝑝∗ which produces the best
performance 𝑞 after incrementally training all tasks up to task k. For
the first step, we find the best performing hyper-parameters in task

1 (𝐷1) by searching among the set of architectural hyper-parameters
(lines 1-5 in Algorithm 1) and update the model𝑚𝑝∗ with the found

hyper-parameters (line 6). The next step is to find the best model

by searching among the set of learning hyper-parameters and IL-

method-specific parameters in subsequent tasks from task 2 to k

(lines 7-13). Finally, we select the best model which shows the high-

est performance based on test sets after incrementally trained up

to task k (line 14). Note that to facilitate the extensive experiments

performed in our study and to make a fair comparison among the IL

methods (Section 5), we first identify the best architectural hyper-

parameter (from 𝐿 ⊂ {1, 2} and 𝑆 ⊂ {32, 64}) and then use the
found hyper-parameter across the different IL methods. The final

LSTM architecture we used for each dataset are reported in Table 1.

3.5 Implementation

We implemented our continual learning framework on Nvidia Jet-

son Nano and One Plus Pro smartphone platforms. All the IL al-

gorithms were explored on Nano GPU, and we used PyTorch 1.1

to implement the framework. Keeping in mind that Scenario 3 is

the most practical continual learning scenario and iCaRL is the

best performing IL approach, we only implemented iCaRL for Sce-

nario 3 on the smartphone’s CPU (as an Android app) using the

DeepLearning4j library. The smartphone app size is 134 MB. We

choose CPU on the smartphone as it provides an upper bound on

the performance of any system and is more challenging to imple-

ment. We envisage that if a system can work (or at least feasible)

on a CPU, then it would be much easier and faster to run similar

systems on accelerators such as GPU. When working on a dataset,

we first loaded the training data pertaining to all the tasks in the
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memory to make the continual learning process work faster. As a

limited amount of memory is allocated to each Android app, we set

large heap property in the app to True to use larger heaps for our

app. We still encountered memory issues, especially when work-

ing with large datasets such as Skoda, which we solved by using

memory-mapped files.

In addition, we employ a weighted F1-score which is more re-

silient to class imbalances as the employed datasets (see §4.1 for

details) are not balanced [14, 49]. As in [21], we applied a weighted

loss to all evaluated methods by estimating the inverse class dis-

tribution which gives more importance to the loss of a class with

fewer samples. Also, as deep learning models can overfit to small

datasets such as EmotionSense, with our framework, we experi-

mented with shallow and deep neural network architectures and

found that deep architectures show marginal improvement over

shallow architectures, indicating that the overfitting is not an issue.

4 EXPERIMENTAL SETUP

Before we present the findings of this work in Section 5, we describe

experimental setup for conducting a comprehensive evaluation of

three continual learning schemes in mobile and embedded sensing

applications. We first describe six datasets in three different sensing

applications (§4.1) and evaluation metrics adopted for systematic

comparison of the IL techniques and their trade-offs between system

aspects (e.g., storage and computational costs) (§4.2).

4.1 Datasets

We focus on three sensing applications (e.g., HAR, GR, and ER)

as they are some of the most popular applications in the mobile

sensing. Table 1 shows the overview of the employed datasets.

4.1.1 Human Activity Recognition (HAR). For the HAR application,

we used three datasets: (1) HHAR [49], (2) PAMAP2 [41], and (3)

Skoda [48]. These datasets contain many real-life activities (e.g.,

walking, sitting, and cycling) obtained using Inertial Motion Units

(IMUs), which contain accelerometer, gyroscope, andmagnetometer

data of mobile and wearable devices. We next present the detailed

summaries of the three datasets.

HHAR: This dataset considers six different daily activities of

users The data was recorded from nine participants, where they

followed a scripted set of activities with eight smartphones and four

smartwatches of different brands and models. Having various de-

vices for recording makes HHAR an excellent benchmark to study

heterogeneity of HAR (i.e., sensor biases, sampling rate heterogene-

ity, and sampling rate instability). We follow the preprocessing

steps as proposed by Yao et al. [53]. Raw measurements of both

accelerometer and gyroscope are segmented into 5-second samples.

Each sample is divided into time intervals of 0.25s. After that, we

apply a Fourier transform to each time interval. It produces 𝑑 × 2𝑓
dimensional vectors per time interval, where 𝑑 is the dimension
for each measurement and 𝑓 is the frequency with magnitude and
phase pairs, resulting in 120 dimensions. We adopt leave-one-user-

out (LOUO) for evaluation [53]. One user (i.e., the first participant)

is used for testing, and the remaining users are left for training.

PAMAP2: In this dataset, nine subjects carried out various daily

living activities and sportive exercises. IMU data (accelerometer,

gyroscope, magnetometer), heart rate, and temperature data were

recorded from body-worn sensors attached to the hand, chest, and

ankle. The resulting dataset has 52 dimensions, and more than 10

hours of data were collected. We follow a preprocessing protocol

used by Hammerla et al. [14]. The sensor data are downsampled

to 33Hz. After that, all samples are normalized to zero mean and

unit variance. Also, to be consistent with the previous works [13–

15], we use runs 1 and 2 from the sixth participant for testing and

remaining data for training.

Skoda: The Skoda dataset contains activities of assembly-line

workers in a manufacturing scenario. One subject wore 20 3D

accelerometers on both arms. Following the preprocessing steps [13,

34], we employ raw and calibrated data from ten accelerometers

placed on the right arm, resulting in input data of 60 dimensions.

The data are downsampled to 33Hz and normalized to zero mean

and unit variance. For experiments, the last 10% of each class is used

as the test data and the remaining as the training data. Note that

Skoda consists of one subject, i.e., subject dependent evaluation.

4.1.2 Gesture Recognition (GR). We employ the Non Invasive Adap-

tive Prosthetics (Ninapro) database [2] for the GR application in

our experiments as it consists of surface electromyography (sEMG)

signals and thus can provide different sensor modalities than IMU

sensors present in HAR datasets.

Ninapro (Per Subject): The Ninapro database is widely used

in research on the hand movement recognition application. We

employ Ninapro Database2 (DB2) in this study. It includes sEMG

data recordings from 40 subjects while performing several repet-

itive gestures such as wrist movements, grasping and functional

movements, and force patterns. Following, Li et al. [27], we select

ten types of hand gestures commonly used in daily life. After that,

we downsample the sEMG data to 200 Hz and normalize them to

zero mean and unit variance. We used a sliding window size of 200

ms with a 50% overlap [7, 56]. We select a subject who has the most

amount of data samples for subject dependent (i.e., per subject)

evaluation. After that, we use the fifth repetition for a test set and

the remainder for training.

Ninapro (LOUO): To have consistent evaluation with the HAR

application we adopt LOUO evaluation for the GR application using

the Ninapro dataset. We select the top ten subjects having more

data samples than others. After that, we use a subject with the

least data samples for testing and the remainders for training. The

preprocessing steps are the same as in Ninapro (Per Subject).

4.1.3 Audio Sensing Task. We pick Emotion Recognition (ER) since

it is one of the most widely adopted audio sensing tasks. We employ

the EmotionSense dataset [39] which was collected by recording

human participants’ emotions as well as proximity and patterns of

conversation using an off-the-shelf smartphone. This dataset has

been used in multiple studies to understand the correlation and

impact of interactions and activities on the emotions and behavior

of individuals in various settings [12][25][30].

EmotionSense: The EmotionSense dataset contains audio sig-

nals which represent 14 different emotions. In the EmotionSense

dataset, each measurement corresponding to a particular emo-

tion (or class) is based on a 5-second context window. Following

Georgiev et al. [11], we extract 24 log filter banks [47] from each

audio frame over a time window of 30 ms with 10 ms stride. Each
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Table 1: Overview of the employed datasets.

Application Dataset Dimension # Train Data # Test Data # Classes 𝑳𝒂𝒚𝒆𝒓/𝑺 𝒊𝒛𝒆

HAR

HHAR 20 × 120 59,403 7,721 6 2/64

PAMAP2 33 × 52 35,263 5,209 12 1/64

Skoda 33 × 60 10,047 1,193 10 1/64

GR
Ninapro (Per Subject) 40 × 12 3,118 639 10 1/64

Ninapro (LOUO) 40 × 12 30,488 3,759 10 1/64

ER EmotionSense 20 × 24 2,011 224 14 2/64

sample contains 500*24 = 12,000 features where 1–24 features are fil-

ter banks from the first 10 ms, and 25–48 features are filter banks for

the next 10 ms and so on. After that, as our preprocessing steps, we

downsample each sample measurement by averaging correspond-

ing 24 filter banks of every 250 ms (or 25 consecutive windows)

without any overlap to reduce the length of the input sequence for

a learned neural network. We normalize each window to zero mean

and unit variance.

4.2 Evaluation Metrics

We consider how much an IL method forgets previous tasks and

learns new tasks after it was trained from task 1 to k to assess the

actual performance of IL methods [6] by considering the following

metrics.

Average Performance Measure (A): We denote the perfor-

mance measure of a model on the j-th task ( 𝑗 ≤ 𝑘) as 𝑎𝑘,𝑗 ∈ [0, 1]
after the model is trained from task 1 to k. The average performance

measure at task k is defined as follows:

𝐴𝑘 =
1

𝑘

𝑘∑

𝑗=1

𝑎𝑘,𝑗 (5)

The output space consists of∪𝑘𝑗=1𝒚
𝑗 , and 𝑎𝑘,𝑗 is based on a weighted

F1-score in this work. Note that 𝑎𝑘,𝑗 can be used to indicate an
accuracy, proportion of correctly classified activities or gestures.

Forgetting Measure (F): The forgetting measure provides an

estimate of how much a model forgets about the task given its

present state. The forgetting for the j-th task after the model has

been trained up to task 𝑘 > 𝑗 can be quantified as:

𝑓 𝑘𝑗 = max
𝑙 ∈1,...,𝑘−1

𝑎𝑙, 𝑗 − 𝑎𝑘,𝑗 , ∀𝑗 < 𝑘 (6)

The average forgetting at k-th task is denoted as 𝐹𝑘 = 1
𝑘−1

∑𝑘−1
𝑗=1 𝑓

𝑘
𝑗

by normalizing the number of tasks seen previously. The lower the

𝐹𝑘 , the less forgetting on previous tasks.
Intransigence Measure (I): Intransigence is defined as the in-

ability of a model to learn new tasks. To quantify the inability to

learn, the joint model, often considered upper bound, which has

access to all the datasets seen so far (∪𝑘
𝑙=1𝐷𝑙 ) is compared and its

performance is denoted as 𝑎∗
𝑘
. We then denote the intransigence

for the k-th task as:

𝐼𝑘 = 𝑎∗𝑘 − 𝑎𝑘,𝑘 (7)

where 𝑎𝑘,𝑘 represents the performance of a model on the k-th task
trained up to task k. Lower 𝐼𝑘 implies that a model performs as close
as a joint model or performs even better than the joint model when

intransigence is negative (𝐼𝑘 < 0). Note that we use 𝑎𝑘,𝑘 and 𝐼𝑘 as

the main performance indicators of a model since we are interested

in the current performance of the model on all learned tasks from

1 to k.

Note that in addition to metrics mentioned above, we also report

storage and latency required to execute each IL method.

5 FINDINGS

We now present the results of our evaluation. Firstly, we compare

the performances of different IL methods on HAR, GR, and ER tasks

using two basic scenarios (Scenario 1 and 2) in §5.1. Then, we study

the performance of IL methods for Scenario 3 in §5.2. We examine

the generalizability of IL methods across different datasets (§5.3).

Then, we discuss the trade-offs of IL methods with respect to the

storage, computational costs, and memory footprint. (§5.4). Finally,

in §5.5, we investigate the effect of iCaRL specific parameters on

the performance.

5.1 Performance on Simple and Mildly
Difficult Tasks

We show the best average weighted F1-scores across all runs for

different IL methods for Scenario 1 and 2 for different datasets in

Figure 2 and Figure 3, respectively. For HAR and GR applications,

the results of iCaRL/GEM with the budget size of 20% are shown

in Figure 2 and Figure 3 since the models with the budget size of

20% show the best performance. Then, for the ER application, the

results of iCaRL/GEM with the budget size of 40% are shown since

the EmotionSense dataset has the least number of training samples,

requiring more budget size in ER than the other two applications.

Joint refers to the case when training data is available for all the

classes from the beginning. It is a classic case to train a model with

all data at once and serves as the upper bound in many cases.None

refers to the case when no IL method is applied to solve CF. The

white part in the figure shows performance on Task 1, and the grey

part shows performance for Task 2.

The results show that without any IL method (None), the per-

formance drops sharply as soon as a new task is encountered. The

decline in performance is as drastic as 60% in both scenarios. iCaRL

provides the best performance in Scenario 1, which stays very close

to the performance obtained with the joint model. It is because

iCaRL stores representative exemplars and relies on a nearest-class-

mean (NCM) rule that is robust against changes in the data repre-

sentation [40]. In fact, all the IL methods effectively solve the CF

problem and achieve comparable performance to the joint model

(between 5% and 15%) after only running for a few epochs (5 or

less in many cases). One can conclude that, in general, the existing IL
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Figure 2: The performance comparison of the five IL meth-

ods including two baselines in Scenario 1 on each dataset.

methods we analyzed can solve the CF issue on mobile and embedded

sensing applications for simple scenarios.

However, the same cannot be said for the performance in Sce-

nario 2. Except iCaRL, none of the other methods seems to solve the

CF issue for the mildly complex scenario (i.e., Scenario 2). The per-

formance drop is up to 60% when the performances between IL

methods and the joint model are compared. iCaRL remains the best

performing method with its weighted F1-score close to that of the

joint model (within 10%). GEM performs the second-best (within

few epochs) on HAR datasets while EWC performs well for GR

and ER datasets. Although GEM is a replay with exemplars-based

approach like iCaRL, it never matches the performance of iCaRL

due to its reliance on using gradients and not the actual exam-

ples themselves. Another reason might be that iCaRL selects best

examples to be stored based on herding (a sort of prioritization),

while GEM employs selecting examples randomly which can be

less informative. A regularization-based method such as SI and a re-

play only approach such as LwF perform poorly across all datasets.

The weighted F1-score degrades roughly 40–50% of what can be

achieved by the joint model. As indicated by [1], the performance

of LwF significantly decreases when the model learns a sequence
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Figure 3: Performance comparison in Scenario 2.

of tasks drawn from different distributions. In other words, when

tasks learned by LwF are not sufficiently related, enforcing the new

model to give similar outputs for the old task may hurt the model’s

performance. SI relies on the weight changes in a batch gradient

descent which can overestimate the importance of the weights and

thereby leads to lower performance.

Note that iCaRL employs a different way (i.e., NCM rule) to clas-

sify data samples (perform inference) than other methods (including

None and Joint) which use cross-entropy based classification. Also,

for GEM, it minimizes the loss on the current task by using in-

equality constraints, avoiding its increase but allowing its decrease.

Therefore, iCaRL and GEM can obtain different weighted F1-scores

than the other methods in task 1. Otherwise, ideally one would

assume all methods (e.g., None, EWC, SI, LwF in our study) to get

the same performance in the first task as it only involves learning a

baseline LSTMmodel without any IL. Also worth mentioning is that

initially (especially task 1) IL methods can achieve higher weighted

F1-scores than the joint model. It is because their performance is

based on classifying the smaller number of classes than the joint

model, where all classes need to be classified from the first epoch.

326



1 2 3 4
Task

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

(a) HHAR

1 2 3 4 5 6 7
Task

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

(b) PAMAP2

1 2 3 4 5 6
Task

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

(c) Skoda

1 2 3 4 5 6
Task

0.0

0.2

0.4

0.6

0.8

1.0
W

ei
gh

te
d 

F1

(d) Ninapro (Per Subject)

1 2 3 4 5 6
Task

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

(e) Ninapro (LOUO)

1 2 3 4 5 6 7 8
Task

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

(f) EmotionSense

Joint
None

EWC
Online EWC

SI
LwF

iCaRL
GEM

Figure 4: The performance comparison in Scenario 3. All re-

ported results are averaged over 10 trials, and standard-error

intervals are depicted.

5.2 Performance on Many Sequential Tasks

Figure 4 shows results for Scenario 3. Recall that Scenario 3 presents

the case when classes are added one by one to an already existing

deep learning model, which will happen in real-life scenarios and is

the most challenging task for any IL method. Note that this graph

is shown differently than the graphs for Scenario 1 and 2 (epoch

based) as in epoch based graph, we would have only two data points

to show as there were only two tasks. In Scenario 3 the number of

tasks will be 𝑁 /2 + 1 for N classes. Without the IL method (None),
CF happens, and the weighted F1-score almost always lies between

0%–10%. iCaRL is the best method and appears to solve the CF issue

for the challenging third scenario. Its performance is nearly equal to

the joint model in most of the cases. All other methods do not solve

the CF issue, and the performance suffers severely as more tasks are

added to the system especially with LwF and SI.

Table 2: Average performance of differentmethods in all sce-

narios on HAR, GR, and ER.

Scenario Methods HAR GR ER

𝐴𝑘 𝐹𝑘 𝑎𝑘,𝑘 𝐼𝑘 𝐴𝑘 𝐹𝑘 𝑎𝑘,𝑘 𝐼𝑘 𝐴𝑘 𝐹𝑘 𝑎𝑘,𝑘 𝐼𝑘

1

None 0.55 0.35 0.54 0.36 0.22 0.29 0.20 0.32 0.47 0.11 0.44 0.16

EWC 0.88 0.01 0.86 0.03 0.49 0.01 0.47 0.05 0.60 0.01 0.58 0.03

SI 0.85 0.03 0.81 0.07 0.45 0.04 0.42 0.10 0.57 0.01 0.54 0.07

LwF 0.84 0.02 0.79 0.10 0.47 0.02 0.44 0.09 0.57 0.01 0.54 0.07

iCaRL 0.89 0.01 0.88 0.01 0.51 0.01 0.49 0.03 0.57 0.02 0.56 0.05

GEM 0.88 0.01 0.87 0.02 0.46 0.03 0.43 0.09 0.57 0.01 0.54 0.06

2

None 0.30 0.76 0.41 0.48 0.20 0.48 0.23 0.29 0.27 0.45 0.27 0.34

EWC 0.77 0.06 0.65 0.24 0.47 0.06 0.35 0.17 0.55 0.01 0.39 0.22

SI 0.64 0.26 0.60 0.29 0.31 0.31 0.29 0.23 0.38 0.27 0.32 0.29

LwF 0.70 0.03 0.48 0.41 0.45 0.06 0.31 0.21 0.52 0.04 0.35 0.26

iCaRL 0.89 0.05 0.86 0.03 0.53 0.09 0.51 0.02 0.57 0.07 0.53 0.08

GEM 0.77 0.13 0.71 0.18 0.39 0.19 0.31 0.21 0.51 0.08 0.37 0.24

3

None 0.22 0.21 0.10 0.79 0.09 0.17 0.05 0.48 0.18 0.16 0.12 0.49

EWC 0.75 0.01 0.56 0.34 0.44 0.01 0.31 0.21 0.46 0.01 0.30 0.49

Online EWC 0.72 0.03 0.59 0.30 0.44 0.01 0.30 0.22 0.45 0.01 0.30 0.31

SI 0.59 0.10 0.42 0.47 0.32 0.07 0.22 0.31 0.42 0.02 0.24 0.36

LwF 0.53 0.06 0.34 0.55 0.20 0.08 0.12 0.40 0.29 0.11 0.18 0.43

iCaRL 0.86 0.01 0.79 0.10 0.53 0.01 0.45 0.07 0.62 0.12 0.48 0.13

GEM 0.70 0.07 0.57 0.32 0.33 0.08 0.22 0.31 0.33 0.02 0.16 0.44

- Joint - - 0.89 - - - 0.52 - - - 0.61 -

5.3 Generalization

Table 2 shows the results in a summarized way for all the datasets

and IL methods evaluated in our study. 𝐴𝑘 refers to average perfor-

mance on all tasks while 𝑎𝑘,𝑘 shows the weighted F1-score at the
end of learning all tasks. 𝐹𝑘 tells us how good an IL method is in
retaining old knowledge about previous tasks. Whereas 𝐼𝑘 means
howmuch an IL method is good at learning new tasks. Note that the

higher the values of 𝐴𝑘 and 𝑎𝑘,𝑘 , the better the model is. However,
for 𝐹𝑘 and 𝐼𝑘 , a low value indicates a better model since low 𝐹𝑘 and
𝐼𝑘 means that the model forgets knowledge of previous tasks less
and performs as close as a joint model, respectively. iCaRL is one

of the best-performing methods on all metrics across all datasets.

iCaRL can learn new classes (tasks) while retaining old knowledge

and maintain high performance even in the most challenging sce-

nario. Given that small errors are allowed when performing HAR,

GR and ER, iCaRL alleviates the issue of CF to a large extent. The

same is not true for all other IL methods. Although LwF allows

previous knowledge to be largely retained (low 𝐹 value), it does not
learn new tasks easily and thus has low performance in general. SI

is neither good at learning new tasks (high 𝐼 ) nor at remembering
old knowledge (high 𝐹 ). EWC and online EWC offer a decent alter-
native to iCaRL without needing extra storage on-device but at the

expense of lower performance than iCaRL. The overall takeaway is

that iCaRL can enable a system to learn incrementally (continuously)

in the mobile and embedded sensing domain (if storage is not such a

constraint on a device).

5.4 Storage, Latency, and Memory Footprint

Storage: We report the storage overhead of each IL method, as

shown in Table 3. We first specify the mathematical formulas used

to calculate the overall storage requirements of each IL method

to show how much storage the IL method needs with respect to

the number of tasks (T ) added, the model parameters (𝑀), and the
budget size (B). This point would help practitioners and researchers

easily understand how much storage overhead occurs when they

want to deploy their models with a particular IL method. First of

all, LwF requires no extra storage other than the storage needed
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Table 3: Storage requirements of ILmethods.M refers to the

number of model parameters, T represents number of tasks

and B is the storage budget.

Category Method Required Storage

Reg-based

EWC 2 ×M × T

Online EWC 2 ×M

SI 3 ×M

Replay-based LwF M

Replay+Exemplars
iCaRL M + B

GEM T ×M + B

to store the model parameters (𝑀). Then, SI requires a running
estimate (𝑤𝑘 ), the cumulative importance measures (Ω

𝑖
𝑘
), and refer-

ence weights (𝜃∗
𝑘
) of importance weights of the current task. EWC

stores fisher matrices and means for each task. Unlike EWC, Online

EWC is only required to store one fisher matrix and running means

across tasks. Thus, the required storage for Online EWC does not

increase as the number of learned tasks increases. Similar to LwF,

iCaRL also requires the previous task model for knowledge distilla-

tion. For GEM, it stores the gradient of the exemplar set for each

learned task. As both iCaRL and GEM rely on stored examples, their

storage demands are mainly driven by the number of examples to

be stored (i.e., budget size, B).

Numerical model sizes (i.e.,M + B) are shown in Table 4 for all

the employed datasets in Scenario 3. Note that we do not add tables

containing the results of Scenario1 and 2 due to the page limit.

However, by reporting the results of Scenario 3 where the storage

requirements of various IL methods are greater than or equal to

those of Scenario 1 and 2, we aim to present the upper bound of the

required storage. Besides, the reported numerical sizes of storage

requirements in Table 4 are based on IL methods with the largest

model in our experiments (i.e., number of LSTM layers (𝐿 = 2) and
the number of hidden units (𝑆 = 64)) to capture the upper bound to
practically operate IL methods on embedded and mobile devices.

Here we take the Skoda dataset to further explain our findings as

it represents an ideal use case scenario where IL methods need to

be applied to personal mobile devices (single-user scenario with

modest dataset size). In the Skoda dataset, replay with exemplars

methods such as iCaRL and GEM requires at most around 17 MB,

and other IL methods have even smaller storage requirements. For

EmotionSense dataset where we use up to 40% budget, iCaRL needs

less than 2 MB, and GEM needs less than 3.4 MB at most. Even

with the largest dataset of HHAR in our experiments, the storage

requirements are constrained within less than about 115 MB, which

falls well within the storage capacity of modern embedded devices

and smartphones. Many modern mobile and embedded devices

already support a large amount of storage (in order of GBs).

In summary, the amount of storage required to practically enable

continual learning on many modern edge platforms such as Nvidia

Jetson or Raspberry PIs and smartphones is not excessive, as evident

from Table 4. Note that tuning appropriate parameters in the IL

method would still allow IL to perform effectively, i.e., ensuring

good performance with a reasonable budget size (discussed in §5.5).

Latency: The average training and incremental learning time

to execute different IL methods are illustrated in Table 5 for all

the employed datasets in Scenario 3 on Jetson Nano2 which is an

edge platform having four cores, 4 GB RAM and a GPU and often

used in mobile robotics and can be used in tablets. Training time

represents the usual training time involved in learning a neural

network including updating weights, back-propagation, etc. GEM

is computationally the most expensive. On small datasets of Ni-

napro (Per Subject) and EmotionSense, IL time is around 57.3-85.2

seconds. Then, on the largest dataset of HHAR, IL takes up to 2,660

seconds. It is because gradient computation over previous tasks

is computationally expensive. Also, EWC and Online EWC show

high IL time, taking over 1,213 seconds in HHAR. This is surprising

as EWC is a simple method. However, the time complexity comes

from calculating and updating the Fisher matrices, which is a com-

putationally expensive process, after every task. SI (mostly relying

on running estimates) and LwF (replay only, calculating distillation

loss) are two of the top three fastest IL methods but come at the

peril of very low accuracy, making them unsuitable for IL in mobile

and embedded applications. iCaRL, the best performing IL method,

is also very fast and takes only a few seconds (e.g., 8.46–16.5 sec-

onds) in the Ninapro (Per Subject) and EmotionSense datasets to

complete. In the HHAR dataset, the average latency of IL time of

iCaRL with the largest budget size (i.e., 20%) is relatively small of

150 seconds compared to its training time (i.e., 924 seconds) and the

IL time of EWC (i.e., 1,213 seconds) and GEM (i.e., 2,660 seconds).

In reality, most of the time is taken by actual training (except EWC

and Online-EWC), which depends on the number of epochs to be

performed and is independent of the IL method. Across scenarios,

we observe that the average training time can range from one to 15

minutes in general (except GEM).

Having realized that iCaRL is the most promising method in

terms of accuracy and latency, we wanted to check if iCaRL can

also effectively work on modern smartphone CPUs. For this, we

have implemented iCaRL onOnePlus 7 Pro for three datasets: Skoda,

Ninapro (Per Subject), and EmotionSense as they represent datasets

where IL needs to be applied to personal mobile devices (single-user

case) and Scenario 3 (most practical scenario). The smartphone has

eight cores and 12 GB of RAM. To reiterate, we used DeepLearning4j

library to implement iCaRL. The smartphone app size is 134 MB.

The results are shown in Table 6. Similar to Jetson Nano, iCaRL

takes minimal time (0.5–212 seconds) for all the tasks for every

dataset. This does not only mean that IL is feasible on modern

smartphones but even if a very high number of tasks are to be

learned even in the most challenging scenario, iCaRL can do end-

to-end IL in a few minutes. The training time slows down the

whole process and ranges from 20–75 minutes on the CPU of the

smartphone for different datasets. Also note that the training time

taken by the tasks after the first task (actual incremental tasks after

the initial model is trained) is very small: one to four minutes. This

is a relevant result as one can train a baseline model on a powerful

machine first and can then move it to a mobile and embedded

device to learn incrementally over time. Regardless, we show that

the complete incremental learning process can still be done entirely

2By reporting the results of Scenario 3 where the latency of IL methods is greater than
or equal to that of Scenarios 1 and 2, we aim to capture the upper bound of the latency.
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Table 4: Storage requirements of IL methods for all datasets - Scenario 3. Units are measured in MB.

IL Method HHAR PAMAP2 Skoda Ninapro

(Per Subject)

Ninapro

(LOUO)

EmotionSense

EWC 2.601 3.599 3.177 2.587 2.587 3.663

Online EWC 0.650 0.514 0.529 0.431 0.431 0.458

SI 0.975 0.771 0.794 0.647 0.647 0.687

LwF 0.325 0.257 0.265 0.216 0.216 0.229

iCaRL (1%) 5.990 2.676 1.051 0.270 0.805 0.257

iCaRL (5%) 28.838 12.341 4.187 0.512 3.190 0.407

iCaRL (10%) 57.350 24.421 8.179 0.805 6.179 0.607

iCaRL (20%) 114.374 48.658 16.162 1.410 12.141 0.981

iCaRL (40%) - - - - - 1.755

GEM (1%) 6.989 4.205 2.350 1.351 1.884 1.862

GEM (5%) 29.817 13.874 5.537 1.583 4.278 2.016

GEM (10%) 58.372 25.996 9.532 1.884 7.274 2.217

GEM (20%) 115.444 50.240 17.476 2.485 13.266 2.603

GEM (40%) - - - - - 3.374

Table 5: Average Latency (Training Time/IL Time) in seconds for IL methods on different datasets - Scenario 3 on Jetson Nano.

IL Method HHAR PAMAP2 Skoda Ninapro

(Per Subject)

Ninapro

(LOUO)

EmotionSense

EWC 672/1213 329/599 120/170 173/73.1 251/558 159/67.8

Online-EWC 651/1188 291/570 105/162 148/60.2 225/539 131/46.3

SI 717/144 336/55.3 118/18.0 146/22.1 269/47.1 123/22.4

LwF 660/88.6 362/70.0 113/15.7 150/19.4 284/58.5 128/14.2

iCaRL (1%) 906/76.2 268/36.3 113/13.6 141/12.9 265/32.4 117/8.46

iCaRL (5%) 928/93.0 269/44.2 131/16.6 147/15.1 244/38.3 118/8.80

iCaRL (10%) 896/109 302/54.7 149/19.3 130/13.2 235/43.6 119/10.5

iCaRL (20%) 924/150 299/71.7 123/19.1 149/16.5 228/57.1 130/11.0

iCaRL (40%) - - - - - 111/11.9

GEM (1%) 607/385 262/275 86.6/53.4 117/57.3 196/170 102/70.2

GEM (5%) 1085/1012 289/377 92.3/65.7 119/61.9 219/224 105/81.6

GEM (10%) 1529/1521 379/624 94.2/70.1 122/71.6 295/380 104/76.6

GEM (20%) 2641/2660 576/1247 132/142 124/85.2 454/656 102/72.2

GEM (40%) - - - - - 106/83.5

Table 6: Average Latency (TrainingTime/ILTime) in seconds

for iCaRL on three datasets - Scenario 3 on Smartphone.

IL Method Skoda Ninapro

(Per Subject)

EmotionSense

iCaRL (1%) 4400/9 1956/1.28 1568/0.5
iCaRL (5%) 3894/29 1974/3 1388/1.91
iCaRL (10%) 3869/72 2312/4.5 1535/2.6
iCaRL (20%) 3902/212 2008/5.1 1517/4.7
iCaRL (40%) - - 1506/8.1

on the smartphone CPU, especially given that the phone can be

charged overnight. This is an interesting result as this suggests that

our continual learning framework can be deployed on a smartphone

CPU. It is also encouraging because the performance can be further

improved by exploiting GPU and NPU once support for training them

programmatically starts to emerge.

Memory footprint:We further examine the peak memory us-

age of iCaRLwith its largest budget size of 20-40% on all the datasets

to evaluate whether or not it can fit the tight memory budget of

Jetson Nano. The peak memory overheads of running the end-to-

end IL range from 196 MB for our smallest dataset of EmotionSense

to 1,194 MB for our largest dataset of HHAR, when the CPU is

used for IL. Then, when we use GPU for running iCaRL, it incurs

1,782-2,127 MB peak memory and requires an additional swap space

of 750-3,523 MB. Note that we report the upper bound of the peak

memory usage to understand the memory resource requirements of

IL methods. Also, the memory overheads can be mitigated by using

a smaller batch size and budget size that can fit into resource avail-

ability of a target resource-constrained device. Furthermore, we

observed that the latency reduction using GPU over CPU is largely

consistent between 80-86%, indicating that the swap space has min-

imal impacts on the speed-up of the IL using GPU compared to

using CPU on Jetson Nano. This result confirms that IL in the mobile

329



HHAR PAMAP2 Skoda
Dataset

0.5

0.6

0.7

0.8

0.9

1.0

W
ei

gh
te

d 
F1

0.
80

0.
85 0.

87

0.
80

0.
86

0.
93

0.
80

0.
87

0.
95

0.
81

0.
87

0.
95

0.
82

0.
87

0.
98=1%

=5%
=10%

=20%
Joint

(a) Scenario 1

Ninapro (Per Subject) NinaPro (LOUO) EmotionSense
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1 0.

59

0.
29

0.
41

0.
64

0.
30

0.
51

0.
66

0.
30

0.
53

0.
68

0.
29

0.
54 0.
55

0.
74

0.
30

0.
61

=1%
=5%
=10%

=20%
=40%

Joint

(b) Scenario 1 (GR & ER)

HHAR PAMAP2 Skoda
Dataset

0.5

0.6

0.7

0.8

0.9

1.0

W
ei

gh
te

d 
F1

0.
74

0.
83

0.
79

0.
79

0.
86 0.

89

0.
80

0.
87

0.
92

0.
81

0.
87

0.
94

0.
82

0.
87

0.
98=1%

=5%
=10%

=20%
Joint

(c) Scenario 2

Ninapro (Per Subject) NinaPro (LOUO) EmotionSense
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

0.
48

0.
27

0.
35

0.
58

0.
29

0.
44

0.
61

0.
30

0.
48

0.
65

0.
30

0.
51 0.

54

0.
74

0.
30

0.
61

=1%
=5%
=10%

=20%
=40%

Joint

(d) Scenario 2 (GR & ER)

HHAR PAMAP2 Skoda
Dataset

0.5

0.6

0.7

0.8

0.9

1.0

W
ei

gh
te

d 
F1

0.
74

0.
81

0.
70

0.
79

0.
87

0.
86

0.
79

0.
87 0.

89

0.
79

0.
88 0.

91

0.
82

0.
87

0.
98=1%

=5%
=10%

=20%
Joint

(e) Scenario 3

Ninapro (Per Subject) NinaPro (LOUO) EmotionSense
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
F1

0.
30

0.
27

0.
23

0.
50

0.
30

0.
37

0.
57

0.
28

0.
42

0.
62

0.
28

0.
45 0.

48

0.
74

0.
30

0.
61

=1%
=5%
=10%

=20%
=40%

Joint

(f) Scenario 3 (GR & ER)

Figure 5: The parameter analysis of the best performing

model, iCaRL, in all tasks (HAR, GR, and ER) for all scenar-

ios according to its storage budgets. Reported results are av-

eraged over 10 trials. Standard-error intervals are depicted.

and embedded sensing domain is applicable on resource-constrained

devices within a reasonable memory overhead.

5.5 Performance with IL parameters

We study the importance of the storage budget parameter for iCaRL

as it is the best performing IL method. Figure 5 shows the weighted

F1-score with changing storage budgets of 1%, 5%, 10%, and 20%

of total training samples (up to 40% storage budget for the case

of ER). In general, more samples are needed to avoid CF as the

complexity of the scenario increases. In Scenario 1, only 1% of total

samples are needed to achieve similar performance as the joint

model. Moreover, in Scenario 2 and 3, the results show that the

budget size of 5% is enough to achieve the high performance which

is quite close to that of the joint model, although the difficulty of the

task increases compared to Scenario 1. In contrast, 10% of samples

are required to achieve near joint model’s performance (i.e., upper

bound performance) in the most challenging setup (Scenario 3).

Note that the performances of iCaRL with the budget size of 5%

are often very close to those of iCaRL with budget sizes of 10%, 20%,

and 40%. This result indicates that iCaRL enables us to achieve close

to the performance of the joint model without requiring excessive

storage (less than 30 MB in all datasets in our experiment when a

budget size is 5%). Specifically, the required storage of iCaRL with

5% budget size for each dataset (HHAR, PAMAP2, Skoda, Ninapro

(Per Subject), Ninapro (LOUO), and EmotionSense corresponds to

28.84, 12.34, 4.19, 0.51, 3.19, and 0.41 MB, respectively. This is an

interesting finding, making iCaRL a good candidate to perform IL on

many embedded devices and smartphones with reasonable storage as

only a few samples are required to be stored.

6 DISCUSSION

We discuss the potential guidelines (G) for researchers and prac-

titioners in the mobile and embedded systems community based

on our findings of this work. The readers should take our results

and guidelines with a pinch of salt as we did not compare all the

existing IL methods due to reasons mentioned earlier (Section 3)

and these findings are based on a few prominent IL methods we

analyzed in our study.

(G1): If storage is not an issue on the device, one can choose to use

the iCaRL method since it performs best across all datasets

in different sensing applications. As many modern comput-

ing platforms including smartphones and embedded devices

have large storage capacity, the issue of storing a proportion

of training samples can be minor. iCaRL is also not very com-

putationally expensive on the modern embedded devices and

the smartphone. Also, the process can be sped up by using

GPUs, although it incurs higher peak memory than CPUs.

(G2): GEM, although being a replay with exemplars-based method

like iCaRL, should not be preferred over iCaRL as its per-

formance remains inferior to those of iCaRL. Also, GEM is

computationally expensive as well as requires more storage

than iCaRL.

(G3): In a severely resource-constrained environment, EWC and

Online EWC can be a reasonable alternative to iCaRL since

thesemethods require less additional storage. Although EWC

is a computationally expensive method, the computational

cost can be manageable as the IL process is only performed

once per task. One can reduce the number of samples used

to compute fisher matrices, which account for the majority

of the IL time.

(G4): LwF and SI should be avoided as they offer minimal protec-

tion against CF on mobile sensing applications.

(G5): Suppose the available resources such as storage are con-

strained on the device. In that case, we suggest using iCaRL

with a budget size of 1%–5% of training samples as using a

higher budget size does not always provide enough benefits

if the training dataset size is large (HHAR PAMAP2, and

NinaPro (LOUO)). On the other hand, for datasets having

smaller training sizes such as Ninapro (Per Subject) and Emo-

tionSense datasets, having a higher budget of 20%–40% helps

to a large extent.
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7 CONCLUSIONS AND FUTUREWORK

In this paper, we studied the CF problem using six prominent IL

methods based on three representative sensing applications (i.e.,

HAR, GR, and ER) in three continual learning scenarios with vary-

ing complexities. With our end-to-end IL framework implemented

on Nvidia Jetson Nano and a smartphone (OnePlus 7 Pro), we

conducted extensive experiments to investigate IL methods’ perfor-

mance, generalizability, and trade-offs of storage, computational

costs, and memory footprints. We first identified that CF occurs

in mobile and embedded sensing applications when IL methods

are not used. We also found that while most IL methods solve the

CF in simple scenarios, only iCaRL among the compared methods

can successfully alleviate CF issues in more challenging scenar-

ios across the employed datasets. Furthermore, we demonstrated

that the IL approaches incur minor to modest storage, peak mem-

ory usage, and latency overheads (a minute per task in general),

thereby saving a considerable amount of computational resources

on-device compared to a case when training is done from scratch

whenever a new class/task is added to the system. Finally, based

on those findings, we discuss potential guidelines for practitioners

and researchers interested in applying IL to edge platforms.

As future work, we believe that it would be worthwhile to

further investigate continual learning on more severely resource-

constrained devices such as microcontrollers as they have smaller

storage, limited memory, and low computational power to apply

IL methods. Moreover, we want to study how model compression

techniques such as quantization affect IL methods’ performance.

Similarly, combining binary neural networks with IL methods can

be interesting future work. The other key point our study high-

lighted is that the major bottleneck comes from the training during

the IL process. In this context, techniques such as Mixed Preci-

sion Training (MPT) [9] and quantization using only 16 or 8-bit

floating-point representation [51] for weights might help improve

the training efficiency in terms of its computational costs, memory

footprints and latency.
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