
Efficient Meta Continual Learning on the Edge
Young D. Kwon

Computer Laboratory, University of Cambridge
United Kingdom
ydk21@cam.ac.uk

ABSTRACT
Continual Learning (CL) methods are designed to help deep neural
networks to adapt and learn new tasks/knowledge without forget-
ting previously learned tasks. In recent years, researchers proposed
many CL methods: (1) regularization-based CL, (2) rehearsal-based
CL, (3) dynamic architecture-based CL. However, those CL methods
typically require a moderate or large number of training samples
to learn new tasks/classes since they are essentially a supervised
learning approach. This limits its applicability to real-world ap-
plications that run on the edge where the labeled user data is not
abundant. Hence, Meta CL methods are proposed to solve the limi-
tation by reducing the amount of required training data to a few
samples (e.g., 10-20 samples). However, Meta CL methods also have
limitations. Thus, in this work, I first identify the limitations of
the Meta CL methods, i.e., they require larger model sizes. Then I
propose potential directions to tackle this challenge by ensuring
high performance while minimizing the storage overhead.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems.

KEYWORDS
Continual Learning, Quantization, Edge Computing.

1 INTRODUCTION
With the rise of mobile, wearable devices, and the Internet of Things
(IoT), the proliferation of sensory type data has fostered the adop-
tion of deep neural networks (DNN) in the modeling of a variety
of mobile sensing applications [11]; Then, a crucial characteristic
common to the mobile applications on the edge is the need for a
trained model to adapt to accommodate new classes/tasks and to a
dynamically changing environment. In these settings, the ability to
continually learn [7, 9, 13], that is, to learn consecutive tasks with-
out forgetting how to perform previously learned tasks, becomes
essential.

2 MOTIVATION & METHOD
To enable Continual Learning (CL), many approaches are proposed
in the literature. The first group of CL methods is a regularization-
based CL [8, 16, 18] where regularization terms are added to the loss
function to minimize changes to important weights of a model for
previous tasks to prevent forgetting. Another group of approaches is
a rehearsal-based CL [2, 3, 10, 14] where updating themodel requires
training data from the new class and also a few training samples
from earlier classes. Lastly, dynamic architecture-based CL [4, 15, 17]
modifies the architecture of a model to make it learn new knowl-
edge without interfering with old ones. Although the proposed CL

(a) Performance [12]

OML ANML OML-AIM ANML-AIM
CL Method

0

20

40

60

80

100

N
um

be
r 

of
 P

ar
am

et
er

s

OML
ANML

OML-AIM
ANML-AIM

(b) Storage Overhead

Figure 1: Preliminary analysis of the Meta CL methods.

methods largely improve the forgetting issue of a learned model,
they are limited since labeled training data is required to learn new
tasks/classes continuously. Also, the number of required samples
for new tasks is large. Hence, the applicability of the CL is limited
to real-world mobile applications where labeled user data is scarce
and the computing resources for training are constrained. Also,
For rehearsal-based CL, which generally ensures high accuracy,
requires exemplars to be saved. This incurs additional memory and
storage.

Hence, Meta CL [1, 6, 12] is proposed to resolve the challenges
of the CL methods, alleviating the issues mentioned above by re-
lying on only a few samples of new classes. However, as shown
in Figure 1a, Meta CL’s performance degrades when a large num-
ber of classes are added. New Meta CL method (OML-AIM and
ANML-AIM) [12] is proposed to ensure high accuracy, however, it
uses 3-15x more parameters compared to OML [6] and ANML [1].
For example, the models of OML and ANML have 6M parameters,
whereas OML-AIM’s model has 19M parameters, and ANML-AIM’s
model contains 93M parameters as shown in Figure 1b.

In this work, I propose several directions to solve the limitations
and challenges of the CL methods. First, to solve the performance
degradation problem of OML and ANML, I want to extend the
currentMeta CLmethods as rehearsal-basedMeta CL so as to ensure
high performance without making the model too large. Besides, I
plan to apply model compression techniques (e.g., quantization [5])
to minimize the memory and storage overheads that are incurred
due to the stored exemplars.

3 CONCLUSION
Through the extensive literature review, I first identified the limits
of the three CL methods and recently developed Meta CL methods.
Then, I listed several promising directions to start investigating to
improve the limitations of the CL methods.
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