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Abstract

While there are many advantages to deploying
machine learning models on edge devices, the
resource constraints of mobile platforms, the
dynamic nature of the environment, and differ-
ences between the distribution of training versus
in-the-wild data make such deployments chal-
lenging. Current test-time adaptation methods
are often memory-intensive and not designed to
be quantization-compatible or deployed on low-
resource devices. To address these challenges, we
present LeanTTA, a novel backpropagation-free
and stateless framework for quantized test-time
adaptation tailored to edge devices. Our approach
minimizes computational costs by dynamically
updating normalization statistics without back-
propagation, which frees LeanTTA from the com-
mon pitfall of relying on large batches and histor-
ical data, making our method robust to realistic
deployment scenarios. Our approach is the first
to enable further computational gains by com-
bining partial adaptation with quantized module
fusion. We validate our framework across sen-
sor modalities, demonstrating significant improve-
ments over state-of-the-art TTA methods, includ-
ing a 15.7% error reduction, peak memory usage
of only 11.2MB for ResNet18, and fast adaptation
within an order-of-magnitude of normal inference
speeds on-device. LeanTTA provides a robust so-
lution for achieving the right trade offs between
accuracy and system efficiency in edge deploy-
ments, addressing the unique challenges posed by
limited data and varied operational conditions.

1. Introduction
Performing inference directly on edge devices instead of
relaying information to server-hosted models brings security,
reliability, and accessibility benefits (Qayyum et al., 2020;
Mollah et al., 2017; Guo & Li, 2018; Dai et al., 2019).
However, deploying machine learning models at the edge is
challenging: mobile devices are resource-poor in memory

and energy, and often lack the scale and power of cloud-
hosted GPU acceleration (Dhar et al., 2021).

By nature, on-device models operate with varied sensors in
a range of environments, processing data from distributions
not seen during training (Zhou et al., 2022). A potential
mobile deployment of deep learning is bioacoustics (Zualk-
ernan et al., 2021), specifically citizen science, where peo-
ple capture images or audio of flora and fauna with their
devices (Stowell et al., 2018). Another is on-device diagnos-
tics of cough or heart sounds collected using mobile phones
(Han et al., 2022; Shariat Panah et al., 2022). In such sce-
narios, only a single, critical data point is available — one
rare bird video in a certain forest, or one measurement from
a specific patient; distributions may shift abruptly. Models
trained on data gathered in a lab or clinic may not anticipate
varied conditions in the wild, potentially resulting in high
error rates (Koh et al., 2020). Even large deep learning
models can significantly drop in accuracy under previously
unseen distributions (Liang et al., 2023); edge-deployed
models, compressed to save memory and compute, are even
less capable of generalization (Zhou et al., 2022).

Test-time adaptation (TTA), as illustrated in Figure 6, seeks
to improve model accuracy under distribution shift without
access to the original source or labeled target data (Liang
et al., 2023; Koh et al., 2020). Changes in distribution can
be broad and unpredictable (Liang et al., 2023; Koh et al.,
2020).

Significant challenges stand in the way of on-device de-
ployment of current TTA methods. Backpropagation-based
optimization of normalization layers (Wang et al., 2021; Niu
et al., 2023; Wang et al., 2022; Niu et al., 2022) severely
strains resource-constrained devices, requiring a nontrivial
increase in memory and power over backpropagation-free
methods (Xu et al., 2022; Lin et al., 2024; Huang et al.,
2023; Kwon et al., 2024).

Data availability at the edge further complicates on-device
TTA: many TTA methods perform very poorly under tem-
poral correlation (Wang et al., 2022; Gong et al., 2023) or
limited data (Benz et al., 2021). Not only does memory
constrain batch size, but in the case of low-frequency infer-
ence where data is captured intermittently (such as citizen
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science apps or health signals analysis) (Stowell et al., 2018;
Dong et al., 2024), there may only be a single data point
per distribution shift, and few data points overall. Most
TTA methods will induce model collapse with the small
batch sizes and abruptly changing domains characteristic
to mobile deployments, and cannot adapt to data instances
collected from different domains individually.

To address these gaps, we propose a novel method of
backpropagation-free, stateless, and quantized TTA for edge
devices: LeanTTA, which adapts by dynamically updating
the quantized model’s normalization statistics. Specifically,
(1) we propose a backpropogation-free TTA module capable
of adapting to each unlabeled data point regardless of prior
data availability or continuity. (2) So that the module adjusts
to different distribution shifts without over-reliance on in-
coming information, we propose a stateless statistics update
mechanism based on the per-sample divergence between
train-time statistics and stabilized incoming statistics. (3)
Lastly, we propose layer-wise updates with adaptive fusion,
a novel combination which enables rapid adaptation with
quantized models and provides novel insights into how layer
depth impacts the efficacy of adaptation.

By working with the ubiquitous batch normalization
layer (Ioffe & Szegedy, 2015), present in most edge models,
such as MobileViT (Mehta & Rastegari, 2022),Efficient-
Net (Tan & Le, 2020), and ShuffleNet (Zhang et al., 2017),
our work remains generalizable in the edge model space.

We evaluated LeanTTA on a typical edge device, over differ-
ent sensor modalities and datasets, and conducted extensive
experiments. Figure 1 shows that of the assessed systems,
LeanTTA alone consistently reduces distribution shift er-
ror with low latency and memory consumption on par with
inference — for both quantized and unquantized models.
LeanTTA provides a robust and efficient solution, which
achieves high system efficiency on edge devices, addressing
the unique challenges posed by limited system resources,
scarce data, and diverse operational conditions.

2. Related Work
2.1. Conventional TTA

The restrictive data assumptions inherent in Tent undermine
its robustness in practical applications. Later research efforts
consider several of these limitations. CoTTA (Wang et al.,
2022) tackles catastrophic forgetting and continuous shifts,
while NOTE (Gong et al., 2023) and RoTTA (Yuan et al.,
2023) both reserve batches of data to simulate independent
and identically distributed (i.i.d.) data even under non-i.i.d.
conditions. While these methods improve on Tent’s robust-
ness, they rely on entropy-loss backpropagation, meaning
their accuracy improvements may be dependent on the opti-
mizer and hyperparameters used (Zhao et al., 2023); entropy

Figure 1. LeanTTA comparison against SOTA TTA methods under
abruptly changing distribution shifts. Circle size is scaled to the
maximum memory required for adaptation. Labels indicate batch
size. For methods where models collapsed at batch size one, results
were omitted. Results below the baseline indicate that adaptation
worsened accuracy. The data are comprised of shuffled images,
sampled across all distributions — the method is introduced in
B.1.

loss may also lead to model collapse (Niu et al., 2024). Be-
ing backpropagation-dependent means that they are also,
like Tent, much more memory-intensive than standard infer-
ence.

2.2. Memory-efficient TTA

Some memory-efficient TTA methods attempt to reduce the
depth or frequency of backpropagation. EATA (Niu et al.,
2022) and SAR (Niu et al., 2023) backpropagate selectively
to reduce the computation requirements and avoid noisy
gradients. MECTA (Hong et al., 2023) takes a different
approach to improving memory efficiency, by combining
pruning and selective training. However, reliance on back-
propagation means that, for all aforementioned methods,
their worst-case computational cost is still on-par with Tent,
and may involve complex implementations if quantized and
moved on-device.

2.3. Backpropagation-free TTA

Inference-only adaptation methods comprise a divergent
branch of TTA methods. Being backpropagation-free, their
memory and energy consumption lie on the same order of
magnitude as inference.

Li et al. (2016) propose directly updating the frozen source
statistics in normalization layers of a model with statistics
calculated over the entirety of the target data (Li et al., 2016).
A more practical approach utilizes only mini-batch target
statistics (Benz et al., 2021), though this method fails as
batch sizes approach one. An alternative method extends
the original approach by reducing the target data required
through the use of a weighted average of source and target
statistics (Schneider et al., 2020). Further reducing the target
data needed down to a single image, SITA (Khurana et al.,
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2021) and InTEnt (Dong et al., 2024), respectively, use fea-
ture augmentation and entropy-weighted integration across
a hyperparameter space, though both these mothods require
multiple passes through the entire model per-adaptation.
FOA (Niu et al., 2024) enables forward-only adaptation, but
is ViT-specific and still requires large batch sizes or cached
historical data. RealisticTTA takes a different approach
involving two forward passes, trading off the hyperparame-
ter search for a long warm-up period of roughly 1,000 test
images for batch size one (Su et al., 2024).

Compared with existing baselines, our proposed method
has several advantages. Like other methods, LeanTTA is
backpropagation-free; yet, it eschews ensembles or augmen-
tations, and adapts dynamically per data point, even if points
are sampled from vastly different domains — independent
of batch size or previous data. Our statistics stabilization
strategy eliminates the need for a long warmup period, and
our per-data-point reset prevents any chance of long-term
model collapse. Finally, LeanTTA improves accuracy along-
side computational efficiency by proposing adaptation on a
subset of the model and fusing the non-adaptive layers.

3. The Method
3.1. Problem Description

We formulate the test-time adaptation problem as follows:
a given model fθ(x) is trained over a source dataset with
inputs and labels xs, ys, sampled from the joint probability
distribution Psource(xs, ys). At test-time, the model fθ(x)
with parameters θ encounters inputs xt, with unknown la-
bels yt, where xt, yt are distributed over Ptarget(xt, yt), and
Ptarget(xt, yt) may have diverged from Psource(xs, ys).
The model fθ(x) must adapt to any differences between
Psource and Ptarget with access only to xt. For realistic
on-device deployment on edge devices, our method must
also function on models that have been compressed from
floating point (32-bit) to integer precision (8-bit).

Ideally, TTA for edge devices should adapt to scarce data,
require limited hyperparameter tuning, and function well
across different modalities. In addition, given that data en-
countered in the wild are unlikely to perfectly match the
distribution of finite training data, TTA should be widely
applied (Koh et al., 2020). As such, the method must
be lightweight, quantization-compatible, low-latency, and
memory-efficient, and should consume little power relative
to normal inference.

3.2. LeanTTA

The proposed method LeanTTA is illustrated in Figure 2.
Given a pretrained model, the system updates and adapts
normalization layers to target domain statistics while main-
taining its performance on the source domain. This process

CNN & Linear Layers

(2)

Batch Norm Layers

Source Statistics
(μs, σs2)

Target Statistics
(μt, σt2)

Stabilized Target Statistics
(μb, σb2)

(1)

τ

1-τ
(3)

Calculate Sample Divergence
Mahalanobis
distance d

Balance Source & Target

d * λ

1 - (d * λ)

(4) Normalize & Reset

Extract statistical information

New sample

Figure 2. Proposed updated normalization layer. For each interme-
diate activation, target statistics are recorded and stabilized using
source statistics. The Mahalanobis distance, d, estimates how far
out-of-distribution the stabilized statistics have moved at each layer.
The source and target statistics are then recombined according to
the scaled distance, and used for normalization.

consists of four key steps: (1) extract and stabilize incom-
ing statistics, (2) calculate sample divergence, (3) balance
source and target statistics, and (4) normalize and reset the
model to adapt to the next sample without any chance of
model collapse.

3.2.1. EXTRACT STATISTICAL INFORMATION

Our method is designed to adapt to single data instances
under unknown distribution shifts, enhancing performance
in both continuous and sharply-changing domains. The
process begins by extracting statistical information from the
input data xl

t. We calculate the mean (µt) and variance (σ2
t )

per-feature as follows:

µt ←
1

H ×W

∑
xl
t (1)

σ2
t ← V ar(xl

t) (2)

Here, H and W represent the height and width of the in-
put data, respectively. These target statistics are combined
with source statistics (µs, σ

2
s) using a weighted average,

parameterized by τ , to stabilize the target statistics:

µb ← τµs + (1− τ)µt (3)

σ2
b ← τσ2

s + (1− τ)σ2
t (4)

Directly replacing source statistics with target statistics from
a single data point — highly variable, as shown by the
solid blue line in Figure 3 — lowers accuracy precipitously.
Here, we first stabilize incoming statistics with the original
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training statistics, simulating momentum using τ without
relying on prior data (Figure 3, pink dashed line). τ is a
parameter ranging between 0 and 1 which determines the
weight assigned to the source (τ ) and the target statistics
(1 − τ ). This balance allows for a nuanced stabilization
depending on τ .

We found that, across datasets and models, τ = 0.9 stabi-
lizes the statistics such that, if λ is high enough, accuracy
not only increases, but will not decrease under distribu-
tion shift relative to when τ = 1 (no dependence on target
statistics). Other selections may yield higher accuracy on
different levels of distribution shift, but require foresight
into the nature of the shift. See Figure 7 in the Appendix for
further analysis.

3.2.2. CALCULATE SAMPLE DIVERGENCE

To effectively adapt to single data points, we calculate the
Mahalanobis distance d (De Maesschalck et al., 2000),
which has recently been applied in many SOTA out-of-
distribution detection tasks (Podolskiy et al., 2021; Colombo
et al., 2022), to measure the divergence between source and
our now-stabilized target distributions:

d← 1− e−(µb−µs)
T (Σ2

s)
−1(µb−µs) (5)

Here, (µb − µs)
T (Σ2

s)
−1(µb − µs) calculates the squared

Mahalanobis distance, taking into account the variance and
mean of the source distribution. The exponential transforms
this distance into a metric ranging from 0 to 1, and subtract-
ing it from 1 makes d a measure of divergence, where larger
values indicate greater distribution shifts. Σ2

s is the diagonal
variance matrix, and can be efficiently inverted.

3.2.3. BALANCE SOURCE AND TARGET

The Mahalanobis distance indicates distribution shift sever-
ity, thus informing whether we give more weight to the
source or stabilized incoming statistics. For severe shifts,
more emphasis is placed on source statistics; less-severe
shifts place more emphasis on stabilized incoming statistics.

µnew ← dλµs + (1− dλ)µb (6)

σ2
new ← dλσ2

s + (1− dλ)σ2
b (7)

Here, we set λ as a balancing parameter to ensure that
even when the Mahalanobis distance d is 1, some of the
target statistic will still be incorporated to improve upon the
accuracy to ensures a smooth transition between source and
target statistics.

3.2.4. NORMALIZE AND RESET

The final step involves normalizing the input data xl
t using

the updated statistics, resulting in the output xl+1
t :

Figure 3. Mean (top) and variance (bottom) recorded from a sin-
gle layer of ResNet18 on the the shift-free CIFAR10 dataset, for
a running average with momentum=0.9 (orange), with statistics
calculated at each image (blue), and with stabilized statistics (red).

xl+1
t = γ

(
xl
t − µnew

σnew

)
+ β (8)

We reset the model at each data instance, preventing catas-
trophic forgetting and ensuring robust performance across
diverse data shifts.

As such, our method is designed to be forward-only and
quantization-compatible, making it well-suited for resource-
limited devices. It requires only a single forward pass with
a batch size of one to improve TTA accuracy. As each
data instance progresses through the model’s normalization
layers, statistics are updated sequentially. Once the interme-
diate representation is computed at a layer, the statistics are
immediately reset, preparing the system for the next data
point.

3.3. Partial Fusion Strategy

Our method’s inherent efficiency and compatibility with
quantization is because it is backpropagation-free. When
these methods are quantized, they necessitate real, quantized
training on-device, which is typically infeasible without
specially designed kernels to facilitate stable training, as
discussed in previous studies (Gholami et al., 2021; Lin
et al., 2024).

In this study, we introduce a partial-fusion quantized TTA
strategy applicable to any pretrained models. We not only
circumvent reliance on specially-designed kernels, but also
further improve the efficiency of LeanTTA. We were in-
spired by results from Figure 4: updating the first half of
the model achieves similar or higher accuracy compared
to updating the entire model across different architectures
and datasets. From Algorithm 1 (steps 1-8), given the set
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Algorithm 1 Backpropagation-Free Quantized Test-Time
Adaptation
Require: Model fθ; Data Xs, Xt, Unfused Layers L

1 Begin quantization calibration for xs in Xs do
2 fθ(xs)

3 for l in L do
4 Separate BN and Conv layer, l, in fθ

5 for l not in L do
6 Fuse a layer, l, in fθ

7 Quantize the fused model f̂θ for normalization layer l do
8 Replace l with LeanTTA layer

9 Save original θ for normalization layers for xt in Xt do
10 ŷt ← fθ(xt) Reset all normalization layers

of unfused layers for architecture, our proposed partial fu-
sion quantized strategy fuses only deeper layers. Then, it
updates only the unfused layers based on our TTA method
(Section 3.2).

This strategy further improves the computational efficiency
of the update step of LeanTTA, as the unfused layers are
slower than fused layers with QNNPACK, the quantization
engine which is currently supported on ARM architectures.
Moreover, fused layers do not require storing BN layer
parameters and activations for the update step.

4. Results & Discussion
4.1. Experimental Setup

We briefly explain experimental setups in this section. For
more details, refer to Appendix B.

Datasets. We employ commonly used TTA datasets such
as CIFAR10-C and CIFAR100-C (Hendrycks, 2019a;b) and
realistic, on-device applications with different modalities,
specifically the audio datasets, such as BirdVox-DCASE-
20k (Stowell et al., 2018) and Warblr (Stowell et al., 2018)
(bird song detection task). We use BirdVox to pretrain our
model for audio modality and test it using Warblr for the
abrupt domain shift.

Models. For image modality, we employ two compact ar-
chitectures, namely, MobileNetV2 (Sandler et al., 2018)
and ResNet18 (He et al., 2016). Then, for audio modality,
we adopt VGGish (Hershey et al., 2017). We highlight the
adaptability of our method across varying model architec-
tures and underscore its robustness in handling datasets of
increasing complexity.

Abrupt Domain Shift. To simulate the real-world scenario
of abruptly changing domains (e.g., rare events like pho-
tographs or intermittent recordings), we used two datasets:

(1) CIFAR10-C and CIFAR100-C shuffled randomly across
shift types and severity levels, following prior works (Niu
et al., 2023; Su et al., 2024) and (2) the Warblr dataset col-
lected under diverse conditions and sensors intermittently.

Gradual Domain Shift. As opposed to the abruptly chang-
ing datasets above, gradually changing datasets illustrate a
different use case. Here, the data changes domain slowly,
from severity level 1, to 5, then from 5 back to 1, then to the
next domain. We use CIFAR10/100-C datasets to simulate
this. Label shift is still present, as we otherwise used the
same sampling technique as above.

Baselines. We compare LeanTTA with four SOTA TTA
benchmarks: Tent (Wang et al., 2021), CoTTA (Wang et al.,
2022), EATA (Niu et al., 2022), and RealisticTTA (Su et al.,
2024). In implementing the TTA methods, we followed the
suggestions from their respective papers.

Device. For system measurements, we employ Raspberry Pi
Zero 2W, with 4 GB of swap memory available. We measure
end-to-end latency. Then, we approximate the energy using
a power draw recording device, whose measurements are
sampled throughout and averaged, then multiplied by time
to obtain power in watt-hours.

Quantization. Quantized models were generated using the
QNNPACK backend using PyTorch; post-static quantiza-
tion scales and zero-points were recorded over 100 batches
of size 64 from the CIFAR10/CIFAR100 training datasets.
When necessary, layer fusion was done on adjacent convo-
lutional and batch normalization layers.

4.2. LeanTTA Accuracy Improvement

4.2.1. ABRUPTLY CHANGING DOMAINS

Under abrupt shifts, applying state-of-the-art TTA methods,
even at large batch sizes, can lower accuracy instead of
increasing it. As shown in Table 1, across all distribution
shifts in the CIFAR10/100-C datasets, and across the nat-
ural heterogeneity of the Warblr dataset, LeanTTA more
consistently improves accuracy relative to model without
adaptation under abruptly changing domains. For exam-
ple, it reduces shift error by 2.8% and 6.5% for ResNet18
and MobileNetV2 on CIFAR10-C, respectively. Compared
to TTA-based methods, LeanTTA outperformed the best
baseline, RealisticTTA, by 15.7% and 12% on CIFAR10-C
and CIFAR100-C, respectively, when using ResNet18 un-
der abruptly changing domains. When using MobileNetV2,
LeanTTA achieved improvements of 27.3% on CIFAR10-C
and 13.2% on CIFAR100-C. In history-free, single-batch
datasets, shown in Table 1, most methods collapse, with
accuracies comparable to random guessing. Even when
other methods are tested with a batch size of 64—pushing
the limits of many mobile devices—under abrupt domain
shifts, as shown in Table 3, most fail to improve upon the
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Table 1. % Accuracy on abruptly and gradually changing datasets for batch size = 1. N=5 trials. Bold: best, underline: 2nd best, italics:
worse than baseline.

Method Variant CIFAR10-C Abrupt CIFAR10-C Gradual CIFAR100-C Abrupt CIFAR100-C Gradual

ResNet18 MobilenetV2 ResNet18 MobilenetV2 ResNet18 MobilenetV2 ResNet18 MobilenetV2

None Batch 1 76.3±0.0 67.0±0.0 76.3±0.0 67.0±0.0 51.4±0.0 40.7±0.0 51.4±0.0 40.7±0.0
int8 75.9±0.1 66.4±0.0 75.9±0.0 66.4±0.0 51.6±0.0 40.4±0.0 51.6±0.0 40.4±0.0

RealisticTTA Batch 1 63.4±0.1 46.2±0.0 78.1±1.8 68.4±1.5 42.1±0.3 28.0±0.4 51.2±0.3 32.7±0.3

Tent Batch 1 9.8±1.6 12.3±2.3 9.0±0.002 14.0±0.01 0.0±0.0 0.002±0.004 0.0±0.0 0.0±0.0

EATA Batch 1 9.0±0.0 13.5±0.1 8.96±0.0 13.4±0.1 0.18±0.0 0.44±0.04 0.18±0.0 0.49±0.0

CoTTA Batch 1 9.0±0.0 9.6±0.1 9.0±0.0 9.78±0.18 0.77±0.03 0.0±0.0 0.75±0.02 0.0±0.0

LeanTTA (Ours) Batch 1 79.1±0.0 73.5±0.0 79.1±0.0 73.5±0.0 54.1±0.0 41.2±0.0 54.1±0.0 41.2±0.0
int8 78.8±0.0 72.3±0.0 78.8±0.0 72.3±0.0 54.4±0.0 40.0±0.0 54.4±0.0 40.0±0.0

baseline adaptation-free accuracy; In comparison, LeanTTA
improves accuracy gains consistently. Methods reliant on
entropy-loss backpropagation or warmup periods struggle
to extract stable, representative statistics from mini-batches
composed of data points collected under different distribu-
tion shifts, especially with small batches. Practically, such
methods could not adapt on the first collected data point
without waiting to accrue further data, while our method is
history- and batch-size agnostic.

LeanTTA’s success with abrupt distribution shifts and single-
instance batches extends across architectures and datasets.
(See Appendix G for experiments on MobileViT). Even
on the label-shifted and challenging real-world scenario
presented by Warblr, our method was able to improve
the weighted F1 score of the model, shown in Table 2.
(Weighted F1 was used due to class imbalance). Meth-
ods with batch sizes of 16 and 64 achieved a similar im-
provement in performance, but no backpropagation-based
methods could run with these batches on our edge device,
due to memory constraints.

4.2.2. GRADUALLY CHANGING DOMAINS

As expected, while LeanTTA never induces precipitous
drops in accuracy, we do see that other methods outperform
our method with larger batch sizes under gradually chang-
ing domains. As shown in the column marked “Gradual”
in Table 1, our method improves accuracy, though not as
much as backpropagation-driven methods Tent and EATA —
but only when these methods are equipped with large batch
sizes, which comes at a significant memory cost. For ex-
ample, we were unable to realistically use Tent, EATA, and
CoTTA on the Warblr dataset on our memory-constrained
device. Thus, slightly lower accuracy gains may be the cost
of high-efficiency adaptation. RealisticTTA also performs
well, but requires a long warmup period — accuracy begins
at a random guess and does not stabilize until about 1000
data points of analysis (see Table 5); it is also high-latency.

In mobile and edge applications, the continuity of distribu-

Table 2. Weighted F1 scores for TTA methods applied to the War-
blr dataset. Bold indicates best performance, underline indicates
second-best.

Method Variant Birds
(Weighted F1)

None Batch 1 71.1±0.0
int8 70.1±0.0

RealisticTTA m = 0 66.2±0.1

Tent
Batch 1 47.1±26.1
Batch 16 71.0±1.4
Batch 64 73.2±0.16

EATA
Batch 1 44.1±3.7
Batch 16 69.0±0.2
Batch 64 69.1±0.0

CoTTA
Batch 1 45.4±0.0
Batch 16 51.9±0.9
Batch 64 59.1±0.9

LeanTTA (Ours) Batch 1 72.5±0.0
int8 71.7±0.0

tion shifts is often unknown, or expected to change dras-
tically between individual data instances. From Tables 1
and 3, we suggest that LeanTTA is better-suited for such
environments, and for deployments where efficiency is a
concern.

4.3. System Evaluation

When assessed for latency and memory usage, especially
on-device, LeanTTA outperforms existing TTA methods
capable of correcting distribution shift error (Table 4). For
example, EATA is faster than LeanTTA at a batch size
of 1, and sometimes 16. However, EATA does not con-
sistently improve accuracy at these batch sizes, as shown
in Table 3. Backpropagation-based methods running on
memory-constrained devices must trade off improved accu-
racy from large batch sizes and the corresponding increased
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Table 3. % Accuracy on abruptly and gradually changing CIFAR10-C datasets for backpropagation-based methods with batch sizes 16
and 64. These results may result in out-of-memory errors on highly memory-constrained devices. N=5 trials. Bold: best, underline: 2nd
best, italics: worse than baseline. CIFAR100-C may be more imbalanced due to sampling. Note that Tent requires at least 16 batches to
perform better than LeanTTA on the CIFAR100-C dataset, while LeanTTA requires only a single batch during TTA.

Method Variant CIFAR10 Abrupt CIFAR10 Gradual CIFAR100 Abrupt CIFAR100 Gradual

ResNet18 MobileNetV2 ResNet18 MobileNetV2 ResNet18 MobileNetV2 ResNet18 MobileNetV2

None Batch 1 76.3±0.0 67.0±0.0 76.3±0.0 67.0±0.0 51.4±0.0 40.7±0.0 51.4±0.0 40.7±0.0
int8 75.9±0.1 66.4±0.0 75.9±0.0 66.4±0.0 51.6±0.0 40.4±0.0 51.6±0.0 40.4±0.0

Tent Batch 16 43.7±5.3 19.9±2.8 49.3±3.5 35.2±3.1 51.0 ±1.1 42.77±0.79 64.3±0.4 51.2±4.0
Batch 64 69.6±1.7 52.6±2.8 78.4±3.73 66.6±1.6 53.9±0.47 44.83±0.69 68.5±0.6 58.2±1.3

EATA Batch 16 54.2±4.6 62.8±0.4 68.4±3.1 61.6±3.2 50.4±0.25 39.5±0.19 63.2±0.38 51.2±0.67
Batch 64 75.3±0.74 65.8±0.1 83.0±1.1 79.6±0.9 49.8±0.19 39.76±0.11 62.9±1.2 52.5±0.1

CoTTA Batch 16 56.8±0.2 50.4±0.3 58.0±0.7 51.9±0.4 29.0±0.33 23.17±0.28 31.8±0.2 22.8±0.04
Batch 64 58.8±0.2 51.9±0.3 64.7±0.37 56.5±0.13 32.2±0.12 27.8±0.27 36.1±0.06 30.4±0.13

LeanTTA (Ours) Batch 1 79.1±0.0 73.5±0.0 79.1±0.0 73.5±0.0 54.1±0.0 41.2±0.0 54.1±0.0 41.2±0.0
int8 78.8±0.0 72.3±0.0 78.8±0.0 72.3±0.0 54.4±0.0 40.0±0.0 54.4±0.0 40.0±0.0

Table 4. % System measurements for memory (MB), time (seconds-per-instance), and energy (joules-per-instance) for the three evaluated
models on the Raspberry Pi Zero 2W. “-” indicates that the Pi was unable to run adaptation due to resource constraints. Bold text indicates
best performance, underlined indicates second-best (with the exception of the adaptation-free baseline).

Method Variant VGGish ResNet18 MobileNetV2

Memory Time Energy Memory Time Energy Memory Time Energy

None Batch 1 18.7 1.46±1.40 4 44.7 0.113±0.04 0.3 8.95 0.18±0.11 0.5
int8 4.77 0.48±0.10 1 11.2 0.159±0.0 0.4 2.24 0.50±0.06 1

RealisticTTA Batch 1 18.7 4.13±0.60 10 44.7 3.89±0.11 8.6 8.95 19.6±0.16 46

Tent
Batch 1 78.2 2.59±1.49 6 48.0 0.319±0.19 0.8 36.0 0.45±0.30 1
Batch 16 306.8 - - 60.7 0.402±0.12 0.9 138.4 4.4±0.50 5
Batch 64 1038.2 - - 101.1 0.830±0.20 1 466.1 - -

EATA
Batch 1 63.5 1.52±1.17 3 47.2 0.147±0.22 0.4 29.3 0.219±0.013 0.6
Batch 16 292.0 - - 59.8 0.088±0.16 0.2 131.7 3.44±0.44 4
Batch 64 1023.4 - - 100.3 0.442±0.18 0.8 459.4 - -

CoTTA
Batch 1 263.8 55.31±5.39 74 279.8 53.9±4.5 70 152.4 14.8±1.16 25
Batch 16 1098.8 - - 340.6 7.31±0.39 12 652.7 14.78±1.16 27
Batch 64 3770.9 - - 535.2 5.78±1.84 11 2253.5 - -

LeanTTA (Ours) Batch 1 18.7 1.54±0.34 2 44.7 0.205±0.01 0.6 8.95 0.531±0.030 1
int8 4.77 0.85±0.20 1 11.2 0.185±0.021 0.5 2.24 0.947±0.01 2

latency and memory consumption. For MobilenetV2, in
fact, we found that, on the Raspberry Pi Zero 2W, the back-
propagation required for batch 64 overwhelms the available
memory, crashing the device (see Table 4); the same for
batch sizes of 16 and 64 on the VGGish model with the War-
blr data. RealisticTTA, while memory-efficient, requires a
significant amount of compute time even with only a for-
ward pass, and fails to produce improvements in accuracy
under certain data conditions. Thus, LeanTTA strikes the
most suitable and consistent tradeoff between efficiency and
accuracy improvement for edge computing environments.
Refer to Appendix E for further latency analysis depending
on system architectures.

4.4. Impact of Layers on Adaptation

Restricting adaptation to certain layers can further improve
system efficiency — even more so, in the case of quantized
models, where only adapting certain layers allows us to
fuse the remaining layers as part of the quantization pro-
cess. Figure 4 shows the effects of ablating shallow layers
closer to the input (blue, solid line) or deep layers closer
to the output (orange, dashed line). Removing adaptation
from deep layers does not meaningfully lower accuracy —
sometimes even increasing it. Removing adaptation from
shallow layers resulted in low accuracy improvements, indi-
cating that shallow layers are more important to adaptation.
We hypothesize that this is because deep layers focus on
larger structures while shallow layers learn general patterns
and components. Such “stylistic” information is related to
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Figure 4. Layerwise ablation analysis in two directions: (1) pro-
gressively removing adaptation from shallow layers (blue solid
line) and (2) progressively adding adaptation to deeper layers (or-
ange dotted line). Results are from full-precision (fp32) Resnet18
and MobileNetV2 evaluated on the Abrupt CIFAR10 dataset.

Figure 5. Fused, half-fused, and unfused quantized time-per-
iteration for LeanTTA applied to ResNet18 (left) and MobileNetV2
(right) with a 500-image subset of CIFAR10-C and CIFAR100-C.
For “Half”, batch normalization and convolutional layers are fused
in the half of the model closest to the outputs.

distribution shift (Benz et al., 2021).

Figures 4 and 5 demonstrate that for both the CIFAR10 and
CIFAR100 datasets, and across Resnet18 and MobileNetV2
architectures, applying our adaptation method to only the
shallow half of the model still results in accuracy improve-
ments. (See Appendix G for half-adaptation on MobileViT).
Meanwhile, fusing the other half significantly enhances run-
time efficiency. This observation led to our proposed partial
fusion strategy, detailed in Section 3.3.

4.5. Hyperparameters

Guided by the TTA literature (Niu et al., 2024; Benz et al.,
2021), we suggest setting two hyperparameters to conser-
vative static values. Even under different distribution shifts
that might have an alternative optimal set of hyperparame-
ters, our hyperparameter search demonstrates that by stay-
ing conservatively close to the source statistic weight, our

method will likely decrease shift error, or at the least, not
worsen accuracy. In Figure 7, we can see that staying at 0.9
for both τ and λ will generally keep the accuracy higher
than when τ = 1.0 and λ = 1.0 — the far lower-right
square, representative of inference without adaptation.

5. Conclusions
Inspired by the ineffectiveness of existing TTA methods for
quantized models deployed on low-resource devices, and
their poor performance under diverse, realistic scarce-data
scenarios, we presented LeanTTA, a novel advancement in
on-device TTA. LeanTTA consistently improves accuracy
under the challenging low-data, low-memory, low-power
environment of edge deployments. LeanTTA dynamically
analyzes each incoming data point independently based on
per-sample shift severity measured with Mahalanobis dis-
tance, without having to maintain historical data or large
batches. Given its layerwise nature, LeanTTA also enables
adaptation alongside quantized module fusion, further opti-
mizing the system efficiency of our proposed quantized TTA
while also providing insights into the importance of layer
depth to adaptation. Under data-scarce, rapidly shifting dis-
tributions, LeanTTA avoids model collapse, outperforms
the state-of-the-art while also reducing latency and memory
consumption.
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Impact Statement
LeanTTA looks to advance the accessibility of machine
learning by enabling robust, adaptive methods on low-
resource, often inexpensive devices. The system’s ability
to adapt with limited data to domains not present during
training broader the applications to which machine learning
models can be applied, and generally improve accuracy.

Generalizability. The main criteria for the application of
our method to a given model is the existence of normaliza-
tion layers. An area of future research is the interaction
of our method with layerwise and group normalization lay-
ers, or significantly different architectures, like ViT. Experi-
ments with MobileViT can be found in the Appendix.

Further accuracy improvements. Our suggested method
relies on the selection of two hyperparameters, τ and λ. We
suggest a conservative choice. One might be able to make
a more optimal selection to reach even higher accuracies,
but in real TTA settings, there may not be sufficient data
available to tune hyperparameters. Future work could in-
vestigate the possibility of more noise-resistant metrics for
calculating how far out-of-distribution an individual data
point lies.

Applicability to other data scenarios. In this work, we
focus on the data scenario where inputs to the model are
widely distributed across space and time. However, our
system performs well under both continual and static distri-
bution shift, as it operates independent of prior data. For sit-
uations where distribution shift does not change, further effi-
ciency gains are possible: investigating whether our method
could adapt on a single representative image, then freeze
the updated statistics until the distribution shifts again, is
a promising area of future research. Problematically, this
assumes foresight into the nature of test data, which is often
impossible to obtain.
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Dai, X., Spasić, I., Meyer, B., Chapman, S., and Andres, F.
Machine learning on mobile: An on-device inference app
for skin cancer detection. In 2019 fourth international
conference on fog and mobile edge computing (FMEC),
pp. 301–305. IEEE, 2019.

De Maesschalck, R., Jouan-Rimbaud, D., and Massart, D. L.
The mahalanobis distance. Chemometrics and intelligent
laboratory systems, 50(1):1–18, 2000.

Dhar, S., Guo, J., Liu, J., Tripathi, S., Kurup, U., and Shah,
M. A survey of on-device machine learning: An algo-
rithms and learning theory perspective. ACM Transac-
tions on Internet of Things, 2(3):1–49, 2021.

Dong, H., Konz, N., Gu, H., and Mazurowski, M. A. Med-
ical image segmentation with intent: Integrated entropy
weighting for single image test-time adaptation, 2024.
URL https://arxiv.org/abs/2402.09604.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney,
M. W., and Keutzer, K. A survey of quantization
methods for efficient neural network inference. CoRR,
abs/2103.13630, 2021. URL https://arxiv.org/
abs/2103.13630.

Gong, T., Jeong, J., Kim, T., Kim, Y., Shin, J., and Lee,
S.-J. Note: Robust continual test-time adaptation against
temporal correlation, 2023.

Guo, J. and Li, B. The application of medical artifi-
cial intelligence technology in rural areas of develop-
ing countries. Health Equity, 2(1):174–181, 2018. doi:
10.1089/heq.2018.0037. URL https://doi.org/
10.1089/heq.2018.0037. PMID: 30283865.

Han, J., Xia, T., Spathis, D., Bondareva, E., Brown, C.,
Chauhan, J., Dang, T., Grammenos, A., Hasthanasombat,
A., Floto, A., et al. Sounds of covid-19: exploring re-
alistic performance of audio-based digital testing. NPJ
digital medicine, 5(1):16, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hendrycks, D. Cifar-10-c and cifar-10-p, Jan-
uary 2019a. URL https://doi.org/10.5281/
zenodo.2535967.

Hendrycks, D. Cifar-100-c, December 2019b. URL https:
//doi.org/10.5281/zenodo.3555552.

Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F.,
Jansen, A., Moore, R. C., Plakal, M., Platt, D., Saurous,
R. A., Seybold, B., Slaney, M., Weiss, R. J., and Wilson,
K. Cnn architectures for large-scale audio classification.
In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 131–135,
2017. doi: 10.1109/ICASSP.2017.7952132.

Hong, J., Lyu, L., Zhou, J., and Spranger, M. MECTA:
Memory-economic continual test-time model adaptation.

9

https://arxiv.org/abs/2402.09604
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://doi.org/10.1089/heq.2018.0037
https://doi.org/10.1089/heq.2018.0037
https://doi.org/10.5281/zenodo.2535967
https://doi.org/10.5281/zenodo.2535967
https://doi.org/10.5281/zenodo.3555552
https://doi.org/10.5281/zenodo.3555552


LeanTTA: A Backpropagation-Free and Stateless Approach to Quantized Test-Time Adaptation on Edge Devices

In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=N92hjSf5NNh.

Huang, K., Yang, B., and Gao, W. Elastictrainer: Speeding
up on-device training with runtime elastic tensor selection.
In Proceedings of the 21st Annual International Confer-
ence on Mobile Systems, Applications and Services, Mo-
biSys ’23, pp. 56–69, New York, NY, USA, 2023. Associ-
ation for Computing Machinery. ISBN 9798400701108.
doi: 10.1145/3581791.3596852. URL https://doi.
org/10.1145/3581791.3596852.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015. URL http://arxiv.
org/abs/1502.03167.

Khurana, A., Paul, S., Rai, P., Biswas, S., and Aggarwal,
G. SITA: single image test-time adaptation. CoRR,
abs/2112.02355, 2021. URL https://arxiv.org/
abs/2112.02355.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Beery, S., Leskovec, J., Kundaje, A., Pierson,
E., Levine, S., Finn, C., and Liang, P. WILDS: A
benchmark of in-the-wild distribution shifts. CoRR,
abs/2012.07421, 2020. URL https://arxiv.org/
abs/2012.07421.

Kong, Q., Iqbal, T., Xu, Y., Wang, W., and Plumbley,
M. D. DCASE 2018 challenge baseline with convolu-
tional neural networks. CoRR, abs/1808.00773, 2018.
URL http://arxiv.org/abs/1808.00773.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images, 2009.

Kwon, Y. D., Li, R., Venieris, S. I., Chauhan, J., Lane,
N. D., and Mascolo, C. Tinytrain: Resource-aware task-
adaptive sparse training of dnns at the data-scarce edge.
In International Conference on Machine Learning, 2024.

Li, Y., Wang, N., Shi, J., Liu, J., and Hou, X. Revis-
iting batch normalization for practical domain adapta-
tion, 2016. URL https://arxiv.org/abs/1603.
04779.

Liang, J., He, R., and Tan, T. A comprehensive survey on
test-time adaptation under distribution shifts, 2023.

Lin, J., Zhu, L., Chen, W.-M., Wang, W.-C., Gan, C., and
Han, S. On-device training under 256kb memory, 2024.

Mehta, S. and Rastegari, M. Mobilevit: Light-weight,
general-purpose, and mobile-friendly vision transformer,
2022. URL https://arxiv.org/abs/2110.
02178.

Mollah, M. B., Azad, M. A. K., and Vasilakos, A. Security
and privacy challenges in mobile cloud computing: Sur-
vey and way ahead. Journal of Network and Computer
Applications, 84:38–54, 2017.

Niu, S., Wu, J., Zhang, Y., Chen, Y., Zheng, S., Zhao,
P., and Tan, M. Efficient test-time model adaptation
without forgetting. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 16888–16905. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/niu22a.html.

Niu, S., Wu, J., Zhang, Y., Wen, Z., Chen, Y., Zhao, P., and
Tan, M. Towards stable test-time adaptation in dynamic
wild world, 2023.

Niu, S., Miao, C., Chen, G., Wu, P., and Zhao, P. Test-time
model adaptation with only forward passes, 2024.

Podolskiy, A., Lipin, D., Bout, A., Artemova, E., and Pi-
ontkovskaya, I. Revisiting mahalanobis distance for
transformer-based out-of-domain detection. Proceedings
of the AAAI conference on artificial intelligence, 35(15):
13675–13682, 2021.

Qayyum, A., Ijaz, A., Usama, M., Iqbal, W., Qadir, J.,
Elkhatib, Y., and Al-Fuqaha, A. Securing machine learn-
ing in the cloud: A systematic review of cloud machine
learning security. Front. Big Data, 3:587139, November
2020.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520,
2018.

Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel,
W., and Bethge, M. Improving robustness against com-
mon corruptions by covariate shift adaptation, 2020. URL
https://arxiv.org/abs/2006.16971.

Shariat Panah, D., Hines, A., McKeever, J. A., and
McKeever, S. An audio processing pipeline
for acquiring diagnostic quality heart sounds
via mobile phone. Computers in Biology and
Medicine, 145:105415, 2022. ISSN 0010-4825. doi:
https://doi.org/10.1016/j.compbiomed.2022.105415.
URL https://www.sciencedirect.com/
science/article/pii/S0010482522002074.

Stowell, D., Stylianou, Y., Wood, M., Pamuła, H., and
Glotin, H. Automatic acoustic detection of birds through
deep learning: the first bird audio detection challenge.

10

https://openreview.net/forum?id=N92hjSf5NNh
https://openreview.net/forum?id=N92hjSf5NNh
https://doi.org/10.1145/3581791.3596852
https://doi.org/10.1145/3581791.3596852
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://arxiv.org/abs/2112.02355
https://arxiv.org/abs/2112.02355
https://arxiv.org/abs/2012.07421
https://arxiv.org/abs/2012.07421
http://arxiv.org/abs/1808.00773
https://arxiv.org/abs/1603.04779
https://arxiv.org/abs/1603.04779
https://arxiv.org/abs/2110.02178
https://arxiv.org/abs/2110.02178
https://proceedings.mlr.press/v162/niu22a.html
https://proceedings.mlr.press/v162/niu22a.html
https://arxiv.org/abs/2006.16971
https://www.sciencedirect.com/science/article/pii/S0010482522002074
https://www.sciencedirect.com/science/article/pii/S0010482522002074


LeanTTA: A Backpropagation-Free and Stateless Approach to Quantized Test-Time Adaptation on Edge Devices

Methods in Ecology and Evolution, 2018. URL https:
//arxiv.org/abs/1807.05812].

Su, Z., Guo, J., Yao, K., Yang, X., Wang, Q., and Huang,
K. Unraveling batch normalization for realistic test-time
adaptation, 2024.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. Efficient
processing of deep neural networks: A tutorial and survey.
Proceedings of the IEEE, 105(12):2295–2329, 2017.

Tan, M. and Le, Q. V. Efficientnet: Rethinking model
scaling for convolutional neural networks, 2020. URL
https://arxiv.org/abs/1905.11946.

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., and Darrell,
T. Tent: Fully test-time adaptation by entropy minimiza-
tion, 2021.

Wang, Q., Fink, O., Gool, L. V., and Dai, D. Continual
test-time domain adaptation, 2022.

Xu, D., Xu, M., Wang, Q., Wang, S., Ma, Y., Huang, K.,
Huang, G., Jin, X., and Liu, X. Mandheling: Mixed-
Precision On-Device DNN Training with DSP Offloading.
In Annual International Conference on Mobile Comput-
ing And Networking (MobiCom), 2022.

Yuan, L., Xie, B., and Li, S. Robust test-time adaptation
in dynamic scenarios, 2023. URL https://arxiv.
org/abs/2303.13899.

Yun, S. and Wong, A. Do all mobilenets quantize
poorly? gaining insights into the effect of quantization
on depthwise separable convolutional networks through
the eyes of multi-scale distributional dynamics. CoRR,
abs/2104.11849, 2021. URL https://arxiv.org/
abs/2104.11849.

Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet:
An extremely efficient convolutional neural network for
mobile devices, 2017. URL https://arxiv.org/
abs/1707.01083.

Zhao, H., Liu, Y., Alahi, A., and Lin, T. On pitfalls of test-
time adaptation, 2023. URL https://arxiv.org/
abs/2306.03536.

Zhou, K., Zhang, Y., Zang, Y., Yang, J., Loy, C. C., and
Liu, Z. On-device domain generalization. arXiv preprint
arXiv:2209.07521, 2022.

Zualkernan, I., Judas, J., Mahbub, T., Bhagwagar, A., and
Chand, P. An aiot system for bat species classification.
In 2020 IEEE international conference on Internet of
Things and Intelligence System (IoTaIS), pp. 155–160.
IEEE, 2021.

11

https://arxiv.org/abs/1807.05812]
https://arxiv.org/abs/1807.05812]
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2303.13899
https://arxiv.org/abs/2303.13899
https://arxiv.org/abs/2104.11849
https://arxiv.org/abs/2104.11849
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/2306.03536
https://arxiv.org/abs/2306.03536


LeanTTA: A Backpropagation-Free and Stateless Approach to Quantized Test-Time Adaptation on Edge Devices

Supplementary Material
LeanTTA: A Backpropagation-Free and Stateless Approach to Quantized

Test-Time Adaptation on Edge Devices

A. Background
A.1. Test-time Adaptation

Test-time adaptation (TTA), different from the related approaches of domain adaptation and generalization, is restricted
to the realistic scenario where the model cannot access source data, nor the labels and potential distribution shifts of test
data (Liang et al., 2023). Many TTA methods employ normalization layers, frequently present in deep learning models, to
correct distribution shifts. During training, these layers record sample statistics — the expected value or mean of the input
data (µB) and the variance of the input data (σ2

B) for each mini-batch B. A momentum term estimates the moving average
across mini-batches. An affine transformation of the input is learned and applied after normalization with parameters γ and
β (Ioffe & Szegedy, 2015):

yi = γ
xi − µB

σ2
B + ϵ

+ β (9)

Here, xi represents the input, ϵ is a constant added for numerical stability, and γ and β are learned scaling and shifting
parameters, respectively.

Standard inference assumes that the recorded mean and variance will not change between training and test data. However,
when statistics do shift, test-time adaptation methods like Tent (Wang et al., 2021) unfreeze and update normalization layer
parameters, allowing adaptation to different distributions. While swapping sample statistics µs and σ2

s for per-batch running
statistics is straightforward, updating learned parameters γ and β requires backpropagation. As there no labeled data is
available, Tent proposes entropy minimization (Wang et al., 2021), which has become a common foundation for subsequent
works.

A.2. Quantization

Increasingly, many TTA methods strive to be more efficient than baselines such as Tent (Niu et al., 2024; Hong et al., 2023;
Khurana et al., 2021), but few have been designed to be both backpropagation-free and quantization-compatible.

Quantization is the compression of model parameters to low-precision, which speeds up computation and reduces memory
usage during inference and training. On accelerators designed for high performance, lower memory costs lead to com-
pounding improvements in latency and energy consumption, as energy costs may increase exponentially with each memory
hierarchy level traversed (Sze et al., 2017). Layer fusion reduces adjacent convolution and batch normalization layers (as
well as activation functions) to a single algebraically equivalent convolutional layer, which further reduces memory savings
and decreases runtime.

One could use a system for low-memory quantized training (Lin et al., 2024) for either continual learning or TTA to adapt
models to distribution shifts, but such methods may still consume more time and memory than quantized, inference-only
adaptation, while achieving similar accuracies; additionally, these methods may not work for rare, discontinuous data.
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Figure 6. Illustration of an example TTA problem. Here, the data distribution learned by the model during training over xs, in this example,
gathered by 3 different cameras in different conditions, differs from the distribution of xt encountered at test-time from a different camera
in a different location.

B. Detailed Experimental Setup
B.1. Datasets

This section describes the LeanTTA benchmark tasks: CIFAR10-C, CIFAR100-C, and realistic, on-device applications
with different modalities, specifically the audio datasets BirdVox-DCASE-20k and Warblr. These datasets were selected to
represent common TTA application domains across various conditions.

For image classification, we use the CIFAR10-C and CIFAR100-C datasets (Hendrycks, 2019a;b), widely-used benchmarks
for test-time adaptation. The CIFAR10/100-C datasets contain 19 distinct domains, each with 5 levels of severity. The
images are 3-channel, with 32×32 pixels each. The corrupted datasets are based on the 10- and 100-class CIFAR10 and
CIFAR100 (Krizhevsky et al., 2009) datasets.

For a real-world test case without artificially induced domain shift, in an audio setting, we use the BirdVox-DCASE-
20k (Stowell et al., 2018) and the Warblr (Stowell et al., 2018) datasets. BirdVox-DCASE-20k is an acoustic birdsong
dataset collected from 6 locations around Ithaca, NY over the span of a single night in fall 2015; 50.09% of the 20,000
10-second samples contain birdsong. Warblr is a collection of 8,000 10-second samples collected by users around the
United Kingdom using their personal smartphones, with 76% of the samples containing birdsong. The other 24% contain
miscellaneous sounds, such as weather, human chatter, and traffic noise (Stowell et al., 2018). We simulate an experiment
where a model is trained on BirdVox, then deployed on mobile devices to analyze Warblr. Warblr represents a distribution
shift consisting of sounds not included in the training set, different audio sensors, and different locations. The two birdsong
datasets were provided as part of the DCASE 2018 challenge (Stowell et al., 2018).

B.2. Models

B.2.1. CIFAR MODELS

To rigorously evaluate our method on the CIFAR10 dataset, we employ two compact model architectures: MobilenetV2
and ResNet18. MobilenetV2 is noteworthy for its design tailored to mobile computing, offering an efficient balance of
performance and resource usage (Yun & Wong, 2021). To investigate the impact of scaling the number of classes, we extend
our experimentation by training on the more complex CIFAR100 dataset. We highlight the adaptability of our method across
varying model architectures and underscore its robustness in handling datasets of increasing complexity.
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B.2.2. BIRD CALL DETECTION MODELS

For the bird call detection task, we used a VGGish architecture model based on the baseline architecture provided as part
of the DCASE challenge (Kong et al., 2018). We trained the model on 16,000 samples from the BirdVox dataset with
4,000 samples held out for validation and quantization calibration. Training was carried out for 7,000 iterations, past the
stabilization of the validation loss, and the best-performing model was selected. The inference task was to detect whether
the sound recorded in a 10-second sample contained a real bird call, or other noises.

B.3. Domain Shift Cases

B.3.1. ABRUPT DOMAIN SHIFT

Non-continuous distribution shifts — such as those captured by photography, or recordings spaced out across time or
distance, especially of rare events or subjects — are, from the perspective of the model conducting adaptation, abruptly
changing domains. To simulate the real-world scenario of intermittent data collection throughout variable domains, we used
two datasets: first, a benchmark dataset of CIFAR10-C and CIFAR100-C shuffled randomly across shift types and severity
levels, and secondly, the Warblr dataset.

The Warblr dataset is an exemplar of the challenges of TTA: training on data gathered from a contained spatiotemporal area,
using uniform hardware, then testing on data gathered under diverse conditions and sensors. Warblr is also challenging,
as unlike the training BirdVox dataset, it is imbalanced — 75.6% of the audio samples collected by citizen scientists
contain birdsong, while the other 24.4% contain other sounds. We simulate a similar setting for the image modality with
CIFAR10/100-C, following the example of SAR (Niu et al., 2023) and RealisticTTA (Su et al., 2024) to sample and shuffle
together 100 images from each of the 19 corruption categories and 5 severity levels. There is some label shift present in the
CIFAR10/100-C datasets — compared to the training set, the sampling process unbalances the class datasets.

Quantized models were generated using the QNNPACK backend using PyTorch; post-static quantization scales and zero-
points were recorded over 100 batches of size 64 from the CIFAR10/CIFAR100 training datasets. When necessary, layer
fusion was done on adjacent convolutional and batch normalization layers.

B.3.2. GRADUAL DOMAIN SHIFT

As opposed to the abruptly changing datasets above, gradually changing datasets illustrate a different use case. Here, data
changes domain slowly, from severity level 1, to 5, then from 5 back down to 1, then to the next domain. We used the
CIFAR10/100-C datasets to simulate this. Label shift is still present, as we otherwise used the same sampling technique as
above.

B.4. TTA Baselines

We compared our method to 4 state-of-the-art TTA benchmarks: Tent (Wang et al., 2021), CoTTA (Wang et al., 2022),
EATA (Niu et al., 2022), and RealisticTTA (Su et al., 2024). In implementing the TTA methods, we followed the suggestions
from their respective papers. For Tent, we used the Adam optimizer with a learning rate of 0.001, no weight decay, and
betas of 0.9 and 0.999. For CoTTA, we used SGD with momentum at 0.9 as the optimizer and a learning rate of 0.001; in
addition, we only optimized the batch normalization layers. The fisher values for EATA were calculated using 300 batch 64
data samples; TTA was conducted with SGD + momentum at 0.9. The e margin value was set to 0.4 ∗ ln(numclasses).
RealisticTTA was implemented with a batch normalization momentum of 1.0; we selected a momentum value of 0 for
abrupt and 0.99 for gradual shifts.

B.5. Systems

Systems analysis was done on a Raspberry Pi Zero 2W, with 4 GB of swap memory available. All timings were conducted
on the Raspberry Pi. Energy was approximated using a power draw recording device, whose measurements were sampled
throughout and averaged, then multiplied by time to obtain power in watt-hours.
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Table 5. Accuracy from various adaptation methods on the CIFAR10-C abruptly shifting dataset using only data from the highest try
severity level, with the ResNet18 model. N=5. Bold text indicates highest performance per-column.

Method Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur Motion Blur Zoom Blur Snow Frost Fog

None 13.91±1.08 17.34±1.44 17.02±0.54 53.04±1.84 42.8±1.16 62.02±0.91 59.33±1.1 72.66±1.74 58.39±1.68 67.48±1.33
None (int8) 13.61±0.36 16.77±0.51 17.88±0.56 52.44±0.76 43.49±1.13 58.59±0.67 59.76±1.61 72.1±1.55 58.89±0.85 63.71±1.67
RealisticTTA (1st 1k) 39.92±1.66 42.3±0.49 35.92±0.72 66.10±1.21 44.58±1.05 64.76±1.06 63.76±0.94 59.32±1.17 59.42±0.64 65.70±1.35
RealisticTTA (2nd 1k) 43.3±0.42 44.86±1.09 40.1±1.06 73.97±1.0 49.97±1.15 70.11±1.2 69.63±1.48 65.37±1.1 65.17±1.46 72.49±0.99
Tent (1) 9.97±0.61 11.13±0.44 10.07±0.85 9.75±0.89 9.97±0.64 9.71±1.16 9.97±0.42 10.25±0.7 9.51±0.77 9.91±0.82
Tent (16) 43.25±0.69 46.17±4.76 42.58±2.18 64.19±2.46 43.97±5.04 59.27±2.54 63.06±2.49 56.71±4.1 56.67±2.17 61.11±3.76
Tent (64) 59.24±1.81 58.73±1.37 53.55±1.7 80.12±1.46 56.95±2.27 75.53±1.47 79.26±1.98 74.86±1.4 72.01±1.9 78.87±0.73
EATA (1) 10.67±0.51 10.29±0.83 9.97±0.54 12.69±0.73 10.89±0.49 12.51±0.89 11.97±0.35 11.75±0.66 12.11±0.93 12.57±0.94
EATA (16) 47.38±6.0 46.33±0.85 41.63±4.02 72.66±2.08 47.5±3.92 69.86±1.8 72.38±1.87 66.13±1.61 62.1±0.6 70.69±2.88
EATA (64) 57.44±1.92 60.06±0.77 54.37±1.02 84.49±1.37 62.46±1.11 81.05±0.44 82.71±0.35 75.23±0.77 74.53±0.87 82.85±1.06
CoTTA (1) 9.31±0.88 9.97±0.76 10.37±0.86 12.15±1.27 10.61±0.28 10.77±0.88 10.95±0.96 10.89±0.55 10.27±0.15 11.35±0.63
CoTTA (16) 49.86±1.45 46.29±0.85 53.61±1.18 53.55±1.4 43.35±1.56 53.17±1.46 54.74±1.19 58.29±0.41 62.34±1.2 47.52±0.93
LeanTTA (Ours) 32.59±2.21 38.52±2.21 43.5±1.42 72.19±0.97 52.27±1.62 74.73±1.52 72.29±0.96 77.94±0.98 74.73±1.65 77.86±1.21
LeanTTA int8 (Ours) 30.61±1.11 37.42±1.66 42.24±0.61 68.67±1.16 50.11±1.18 71.33±0.85 70.21±1.32 77.8±1.16 72.43±1.64 76.82±0.63

Method Brightness Contrast Elastic Pixelate JPEG Compression Gaussian Blur Saturate Spatter Speckle Noise -

None 88.31±0.57 19.74±1.26 70.5±1.25 46.33±1.35 69.03±1.54 36.71±0.97 84.01±0.94 79.46±0.77 22.16±1.8 -
None (int8) 88.35±1.11 17.16±0.9 68.99±1.13 46.83±0.95 70.44±1.29 36.83±2.07 83.29±1.01 78.57±0.94 21.69±1.06 -
RealisticTTA (1st 1k) 68.38±0.56 62.90±0.98 54.08±1.66 56.96±1.21 46.46±1.68 65.06±1.27 68.90±1.40 59.74±1.13 42.42±1.06 -
RealisticTTA (2nd 1k) 76.36±1.38 71.39±1.2 59.02±0.93 62.28±1.04 51.77±0.65 72.53±1.01 75.96±1.13 64.9±2.31 46.89±1.5 -
Tent (1) 9.65±0.89 9.65±0.92 9.99±0.93 9.75±0.93 10.15±0.6 10.51±0.99 9.03±0.72 10.43±0.37 9.97±1.22 -
Tent (16) 66.69±3.21 59.54±3.27 52.26±2.27 56.79±3.64 50.44±1.76 62.56±5.3 69.98±2.22 62.66±2.91 46.85±3.82 -
Tent (64) 82.71±1.74 78.24±1.08 67.4±1.27 72.77±1.1 63.01±1.92 81.11±1.57 83.85±1.3 75.86±1.38 58.44±3.59 -
EATA (1) 12.07±0.83 12.51±0.23 11.79±0.55 12.39±1.52 11.19±0.52 12.19±0.93 12.85±0.14 12.35±0.82 9.79±0.48 -
EATA (16) 76.01±1.81 70.28±1.99 59.05±1.64 64.58±2.36 57.58±0.56 72.02±1.74 79.8±1.29 65.34±1.29 47.64±2.95 -
EATA (64) 87.07±1.94 81.64±1.03 71.02±1.26 74.18±1.74 66.8±0.86 83.71±1.91 86.29±0.76 76.86±0.55 60.0±1.57 -
CoTTA (1) 11.97±0.22 11.53±1.05 11.35±0.46 10.71±0.66 11.07±0.89 11.31±0.64 12.03±0.46 11.75±0.5 9.83±0.72 -
CoTTA (16) 68.91±1.44 50.95±0.98 48.21±1.44 52.76±1.34 54.05±0.97 53.37±1.07 62.66±1.67 58.97±2.18 43.13±1.01 -
LeanTTA (Ours) 88.75±0.73 47.45±1.89 68.47±1.86 55.12±1.35 64.56±0.93 60.02±0.82 86.81±0.87 78.68±1.34 45.13±0.67 -
LeanTTA int8 (Ours) 89.39±1.02 36.66±0.92 66.25±1.66 54.93±1.21 65.23±1.14 58.46±1.14 86.27±0.98 77.1±0.84 44.36±1.07 -

Model Precision Resnet18 MobileNetV2

FP32 (no adaptation) 10.09±0.14 7.02±0.29
INT8 (no adaptation) 2.26±0.50 4.77± 0.09
LeanTTA (none fused) 8.81±0.17 29.70±0.41
LeanTTA (half fused) 4.84±0.07 13.06±0.16
LeanTTA (all fused) 1.82±1.10 3.55± 0.08

Table 6. Time-per-iteration in ms for 500 frames from the abruptly-changing dataset. FP32 and INT8 have no attached adaptation;
convolutional and batch norm layers were fused for our method.

C. Hyperparameter Exploration
An exploration of the effect of hyperparameter tuning indicated to us that, as shown in Figure 7, hyperparameter choice can
impact the degree to which adaptation improves accuracy across different domain shifts and severity levels; however, we
found that in keeping the hyperparameters set to 0.9, indicating a conservative balance between the source (90%) and target
(10%) data, we achieved consistent improvement on baseline accuracies. Consistency is key, as it is difficult to anticipate the
severity of the domain shift the model may encounter in the wild, when operating under limited data and computational
resources.

D. High-Severity Domain Shifts
The results presented in Table 5 illustrate the performance of various adaptation methods on the CIFAR10-C dataset,
focusing on data from the highest severity level, using a ResNet18 model. The table highlights the effectiveness of different
approaches in handling a range of corruptions, including Gaussian Noise, Shot Noise, and Impulse Noise, among others.
Notably, our method, even with only one sample, demonstrates robust performance across several corruption types, achieving
the highest accuracy in categories such as Snow, Frost, Brightness, and Saturate, with scores of 77.94%, 74.73%, 89.39%,
and 86.81%, respectively. While some methods, such as EATA (which requires batch sizes of 64) and Tent (which also
requires batch sizes of 64), achieve higher accuracies in certain noise categories, our method remains competitive in others.
A significant advantage of our approach is its efficiency, as it only requires a batch size of 1, making it highly adaptable and
resource-efficient compared to other methods that necessitate larger batch sizes for optimal performance. This efficiency
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Figure 7. Hyperparameter space search for Source Weight τ and Distance Scaler λ with ResNet18 applied to CIFAR10-C. From left to
right, “All” shows accuracies across hyperparameter choices from all 19 categories and 5 severity levels, whereas “Contrast 5” and “Shot
Noise 5” show accuracies from the corresponding noise type and severity. Lighter shaded squares indicate higher accuracy.

does not come at the cost of accuracy, as evidenced by our method’s strong performance across various corruption types.
The results suggest that our method strikes an effective balance between computational efficiency and accuracy, making
it a viable option for real-time applications where resources may be limited. Additionally, the int8 variant of our method
maintains a commendable performance, further underscoring the adaptability and robustness of our approach in different
computational settings. Overall, the results indicate that our method is a promising solution for adapting to severe dataset
corruptions, providing a balance between high performance and low computational requirements.

E. FBGEMM Timings
For the Raspberry Pi, which uses the ARM architecture, a QNNPACK backend is required; however, for other computing
platforms, (FaceBook GEneral Matrix Multiplication) FBGEMM or x86 can be used as alternative quantization engines. In
Table 6, we profiled the timings of our method with FBGEMM on a AMD Ryzen 7 3700X 8-Core Processor to demonstrate
the terrific efficiency scaling of our system on other platforms.

We observed that quantization with the QNNPACK backend engine can slow down quantized inference with and without
adaptation, especially for MobileNetV2, (Table 4). With the FBGEMM engine, we observed a significant speedup post-
quantization; however, FBGEMM is incompatible with ARM architectures, like that of the Raspberry Pi line. We anticipate
that future improvements to the QNNPACK implementation will lead to greater acceleration after quantization. The VGGish
architecture did not suffer the same post-QNNPACK quantization slowdown, likely because it is a shallow model with very
few layers relative to the deeper Resnet18 and MobileNetV2 architectures, which allow inefficiencies to compound.

Table 6 presents a comparative analysis of time-per-iteration in milliseconds for 500 frames from the abruptly changing
dataset, evaluating the performance of ResNet18 and MobileNetV2 across different model precision and adaptation strategies.
Our method of partial layer fusion alongside partial adaptation, provides significant improvements in TTA speed. Specifically,
for ResNet18, our “none fused” approach reduces the time-per-iteration to 8.81 ms compared to the FP32 baseline of 10.09
ms, marking an improvement of approximately 12.7%. In the MobileNetV2 model, which has many more normalization
layers (52) than ResNet18 (18), the “none fused” configuration achieves 29.70 ms; even with GPU acceleration, Tent with a
batch size of one takes 139.7±8.5 ms to analyze one frame.

With partial fusion (“half fused”), ResNet18’s iteration time further drops to 4.84 ms, improving by 52.8% from the “none
fused” setup. For MobileNetV2, the “half fused” configuration reduces the iteration time to 13.06 ms, enhancing speed by
over 56%. The “all fused” configuration offers the most significant improvements, with ResNet18 achieving 1.82 ms, a
79.3% improvement over the “none fused” time, and MobileNetV2 reaching 3.55 ms, a 88% reduction from the “none fused”
time. These enhancements underscore the substantial TTA efficiency gains achieved through our proposed partial layer
fusion strategy.

F. Layerwise Distances
To illustrate the way that the Mahalanobis distance d between source and target statistics changes across layers, we show d
recorded at each layer during adaptation on subsets of CIFAR10/100-C, disaggregated by the severity of the distribution
shift (1 being the least shifted, 5 being the most). From Figure 8, we can see that there are subtle changes between d at the
different severities, indicating that d is able to detect changes in shift severity and dynamically adjust the balance between
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Table 7. % Accuracy on abruptly changing CIFAR10-C datasets using the MobileViT-s architecture (32 BN layers) fine-tuned to the
CIFAR10 dataset. N=5 trials. Bold: best, underline: 2nd best, italics: worse than baseline.

Method Variant Accuracy

None Batch 1 72.0 ± 0.4

Ours Full Adap. 73.8 ± 0.7
Ours 1st 8 75.3 ± 0.3
Ours 1st 16 75.6 ± 0.3
Ours 1st 24 74.8 ± 0.5

Tent Batch 64 75.2 ± 0.4
Tent Batch 16 69.8 ± 1.0

EATA Batch 64 74.2 ± 0.2
EATA Batch 16 71.1 ± 0.7

CoTTA Batch 64 60.9 ± 1.0
CoTTA Batch 16 57.7 ± 0.5

RealisticTTA Batch 2 15.5 ± 0.4

source and target statistics in our adaptation module.

The pattern of these curves are specific to their model architectures, but not the dataset. We see two distinct patterns. For the
Resnet18 distances, at layers after 12 or 13, low-severity shifts begin to produce greater divergences between source and
target statistics, and the distances begin to explode. For MobileNetV2, we see oscillatory behavior of d, which is a possible
area of further investigation but is likely specific to the architecture of the model. There are two peaks of high distance in the
MobileNetV2 architecture For future works, areas of high distance (and thus, implied high variance) may allow us to further
optimize which layers we fuse, versus which layers we add adaptation to, potentially leading to accuracy gains.

G. MobileViT Experiments
MobileViT (Mehta & Rastegari, 2022) is a transformer-convolution hybrid, which uses “transformers as convolutions”.
It has been adopted as a state-of-the-art model which combines the representational power of local spatial inductive
biases (from convolutions) and the global structural understanding of transformers. The hybrid architecture makes it a
good candidate for on-device deployments, as the inclusion of inductive biases improves accuracy over similarly sized
transformer models (Mehta & Rastegari, 2022). We applied LeanTTA to the batch normalization layers of a full-precision
MobileViT-small in order to understand its performance in interaction with transformers and layerwise normalization. The
model was trained on ImageNet and fine-tuned with CIFAR10’s training set, then tested on an abruptly shifting dataset
sampled from CIFAR10-C, as described in our experimental methods.

As shown in Table 7, our method, especially when using partial adaptation over the shallowest half of the model (1st 8, 1st
16), outperforms all other methods, even at large batch sizes. We did not include batch 1 analyses because the nature of
the normalization layers used in the MobileViT-s did not allow for training with batch size set to 1. Table 7 demonstrates
three things: the generalizability of our method, even to architectures with transformer and layer normalization layers; the
potential importance of partial layerwise adaptation, supporting our findings from Figure 4; and the breakdown of other
methods under certain data conditions.
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Figure 8. Layerwise Mahalnobis distance d calculated after stabilization in Equation 3.2.2, separated by severity of distribution shift in the
CIFAR10/100-C datasets (light being the least severe, dark being the most). Shading indicates one standard deviation on either side of the
average over N=5 trials.
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