

ICE3014 (41) – Multimedia Engineering

Final Assignment Report

Face Detection

Professor Yi Juneho

2010311484 – 권영대 –반도체공학과

2013313934 – 박성욱 –전자전기공학부

2014318416 – 배수민 – 컴퓨터공학과

Table of contents

1 Abstract .. 3

2 Method of Multi-Scale Processing ... 4

3 Codes... 4

3.1 Project.m ... 4

3.2 run_detector.m ... 6

3.3 Test Cases .. 8

4 Results .. 11

5 Discussion ... 15

1 Abstract

With an ever growing number on different fields of applications of face detection, be

it a high grade security system in public environments, or simply a face recognition to tag

people on Instagram, in this day and age, multimedia engineering is becoming more and more

important. Many algorithms and approaches for image analysis exist, and none of them are

yet perfect, as standardization is quite hard to achieve, for example misrecognition, detection

speed and reliability are, even in the most modern approaches still quite a challenge.

However the concurrent technology used in the research community combines

different approaches in several steps, leading to quite robust results. By moving a

“recognition window” over an image and dividing it into segments (Sliding Window Face

Detection), allows us to recognize patterns and sub-patterns of faces, to combine them in a

texture histogram for each block, thus enables to distinguish between non-face objects

(negative features) and actual face objects (positive features). Summarizing the results in a

learning curve using a database, where successful face-detections from training images are

stored, which then can be used on a testing image, is what we utilized for this project,

implementing Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM)

to process images for face detection.

2 Method of Multi-Scale Processing

In this project, we implemented Multi-Scale Face Detection System with HOG

features and SVM classifier. Our method of Multi-Scaled Face Detection System consists of

the following steps:

1. Extracting HOG features from positive and negative training examples.

2. Train linear SVM classifier with the extracted HOG features.

3. Compute HOG features in the test dataset.

4. While sliding the detection window from left to right and from top to bottom over the

target image, detect faces by generating bounding boxes around faces which produce

certain matches greater than the threshold value.

5. Scale an image until it becomes smaller than the sliding window size.

6. Apply non maximum suppression on bounding boxes in the image, in order to

increase the performance by removing less confidentially overlapping boxes.

The image data came from Caltech Web Faces, the SUN scene database and CMU-

MIT database. For positive training examples, we utilized Caltech Web Faces which contains

6,713 cropped 36x36 faces. We used the SUN scene database for negative training examples

which were random patches sampled from images of SUN scene database.

3 Codes

Since most of the code base for the face detection project is provided, especially for

project.m, we will only introduce the code which we implemented in this project. Our code is

as follows.

3.1 Project.m

In project.m, we changed parameters for HOG and SVM in order to boost the

performance of face detection. For the HOG parameter, we changed ‘hog_cell_size’ from 2

to 9 such as 2, 3, 6, and 9. We were able to get high performance as we decreased the

‘hog_cell_size’ from 9 to 2.

For the SVM parameter, we tested 2 lambda values such as 0.0001 and 0.00001, and

could get a slightly higher performance when we used 0.00001 instead of 0.0001.

Code

get_random_negative_features.m

 If we want to change the ‘hog_cell_size’ parameter in “project.m”, we need to

change some parts of codes in “get_random_negative_features.m”, to automatically adapt to

the change of ‘hog_cell_size’ in “project.m”. By changing the code in

“get_random_negative_features.m” as shown below, when changing the parameter in

“project.m” it becomes automatically applied in “get_random_negative_features.m”.

Code

3.2 run_detector.m

Code

3.3 Test Cases

1. Cell size = 3 and we could get good results

2. Special cases that results showed many differences depending on cell size

Cell size = 3 Cell size = 6

Cell size and Detection Results

For 4 pictures below, you can see that the number of false positives that are related to

Words is decreased at Cell size = 3

In this picture, we could not get good result in any ways.

 Usually, spelling O and S or something alike, is often recognized as a face.

For the last picture, we couldn’t detect it a face in any condition, which is a pretty special

case. The most suggested explanation is because the face is tilted.

4 Results

A precision-recall curve for the CMU+MIT test set. You can learn more about

precision-recall curves on the web here.

1) Lambda = 0.00001

Cell size = 2 Cell size = 3

AP=0. 884

AP = 0.888

Cell size = 6 Cell size = 9

AP = 0.705

AP = 0.491

2) Lambda = 0.0001

Cell size = 2 Cell size = 3

AP =0.869

AP = 0.881

Cell size = 6 Cell size = 9

AP = 0.695

AP = 0.511

3) HOG

The HOG features and the detection results visualized.

Cell size = 2 Cell size = 3

Cell size = 6 Cell size = 9

Using smaller cells, we can intuitively find that it looks much more like a face of a person.

· 4) Detection results on our own test images (google image and our own image)

 We can see that shaded faces or occluded faces are harder to detect than normal faces,

but the hardest one are tilted faces, because for computers, there is almost no correspondence

to normal faces.

5 Discussion

We experimented with Multi-Scale Face Detection and different threshold values,

lambda and hog cell sizes. Depending on these values, we could get various results. With the

given cell size 6, we could get an AP of about 0.7. With the threshold value of 0.4 and a

lambda value of 0.00001, produced the highest performance with cell size 6. It was not a

satisfying result, so we tried different cell sizes. For using a different cell size, we had to fix

some codes in the “get_random_negative_features.m” file, because we had to train based on

the new cell size to get the right w and b values.

We have tested our face detection algorithm several times to make differences on cell

size, threshold and lambda value. The first improved results that we found was with the cell

size case. The cell size is the dominant factor that makes the PR curve better. With cell size 3,

we could get the highest AP for our code. We found that there exists a trend that decreasing

cell size enhances the performance of the Face Detection system. However, we could not test

many times with cell size 2, because making the cell size 2 required too much of testing time

and did not have much difference to cell size 3.

The threshold value was also a big factor. With high a threshold value, we could get

rid of many false-positives. But when the threshold value is too high, the effect of increased

true-negative detection gets bigger, which produces a lower AP. When we used our own

pictures as an additional test data, we needed a higher threshold value. We assume that it is,

because usually pictures from our camera are more clear and distinct. With clear and distinct

pictures, it can more distinctly detect, whether it is face or non-face, thus a higher threshold

value produces less false positives features with the true positives remaining.

